Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\dfrac{1}{3a+2b+c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{36}\left(\dfrac{3}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)
Tương tự cho 2 cái kia rồi cộng lại
\(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}.16=\dfrac{8}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow a=b=c=\dfrac{3}{16}\)
1.
Nhân 2 vế của BĐT với \(\left(a+b+c\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(3(a^2+b^2+c^2)(a+b)(b+c)(c+a)\ge(a+b+c)\left(Σ_{cyc}(a^2+b^2)(c+a)(c+b)\right)\)
\(\LeftrightarrowΣ_{perms}a^2b\left(a-b\right)^2\ge0\) *đúng*
HÌnh như là \(a+b+c\le\dfrac{3}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{3}{2}\ge a+b+c\ge3\sqrt[3]{abc}\Rightarrow\dfrac{1}{2}\ge\sqrt[3]{abc}\)
Áp dụng BĐT Holder ta có:
\(A=\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\)
\(\ge\left(\sqrt[3]{3^3}+\dfrac{1}{\sqrt[3]{abc}}+\dfrac{1}{\sqrt[3]{abc}}\right)^3\)\(\ge\left(3+\dfrac{1}{\dfrac{1}{2}}+\dfrac{1}{\dfrac{1}{2}}\right)^3=343\)
Xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{3}{2}\ge a+b+c\ge3\sqrt[3]{abc}\Rightarrow\dfrac{1}{2}\ge\sqrt[3]{abc}\Rightarrow\dfrac{1}{8}\ge abc\)
Áp dụng BĐT Holder ta có:
\(B=\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\)
\(\ge\left(\sqrt[3]{3\cdot3\cdot3}+\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}+\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}\right)^3\)
\(=\left(3+2\sqrt[3]{\dfrac{1}{abc}}\right)^3\ge\left(3+2\sqrt[3]{\dfrac{1}{\dfrac{1}{8}}}\right)^3=343\)
Khi \(a=b=c=\dfrac{1}{2}\)
Bạn tham khảo:
Bài ni hay lắm mn Cho 3 số a , b , c thỏa mãn \(0\le a\le b\le c\le1\) Tìm giá trị lớn nhất của biểu thức \(B=\lef... - Hoc24
thầy người miền Trung ạ