Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số nguyên tố nhỏ nhất : 2
số lớn nhất có 1 chữ số : 9
số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5
số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5
abcd = 2955
Số nguyên tố nhỏ nhất là 2 => a = 2
Số lớn nhất có 1 chữ số là 9 => b = 9
Số nguyên tố chia hết cho 5 là 5 => c = 5
Số nhỏ nhất chia hết cho 5 là 0 => d = 0
abcd = 2950. Năm đó là năm 2950
Mình thấy nó vô lí thế nào ấy
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
DO A LÀ SỐ CHÍNH PHƯƠNG VÀ A KHÁC 0 , A CÓ 1 CHỮ SỐ
=> A CÓ THỂ BẰNG 1 . 4 . 9
+, TH1 : A = 1
=> 1D LÀ SỐ CHÍNH PHƯƠNG
=> D = 6
=> C6 LÀ SỐ CHÍNH PHƯƠNG
=> C = 3 HOẶC BẰNG 1( TH 1 KHÔNG THỎA MÃN)
=> 1B36 LÀ SỐ CHÍNH PHƯƠNG
=> B = 9 ( DO 44^2 = 1936
+. TH2 : A= 4
=> 4D LÀ SỐ CHÍNH PHƯƠNG
=> D = 9
=> C9 LÀ SỐ CHÍNH PHƯƠNG
=> C HOẶC BẰNG 0 , HOẶC BẰNG 4
+. NẾU C = 0
=> 4B09 LÀ SỐ CHÍNH PHƯƠNG
=> LOẠI DO KHÔNG CÓ B THỎA MÃN
+, NẾU C = 4
=> 4B49 LÀ SỐ CHÍNH PHƯƠNG
=> KHÔNG TỒN TẠI B THỎA MÃN
+, A = 9
=> 9D LÀ SỐ CHÍNH PHƯƠNG
=> KHÔNG TÍM THẤY D THỎA MÃN
VẬY A= 1 , B = 9 , C=3 , D=6
a=1,4,9.
Nếu a=1→b=6→c=9, nhưng không có d thỏa mãn giả thiết
Nếu a=4→b=9, nhưng không có c thỏa mãn giả thiết.
Nếu a=9→b=, nhưng khôn có c thoản mãn giả thiết.
Vậy không tồn tại a,b,c,d thỏa đề ra !
Cho xyzt là các chữ số thỏa mãn xy khác không tìm số a = x y z t biết a - 2 x y z t = xz với kí hiệu xyz t là số tự nhiên có 4 chữ số thứ tự là x y z t
Ta có:\(\overline{bacd}=n^2\) (n\(\in\) N*)
Do a<b<c<d và \(d\notin\left\{2;3;7;8\right\}\Rightarrow d\in\left\{4;5;6;9\right\}\)
Thử: \(d=4\Rightarrow\overline{bacd=2134}\)(chia hết cho 2 nhưng không chia hết cho 4) (không thỏa mãn )
\(d=5\Rightarrow\overline{bacd=3245}\)(chia hết cho 5 nhưng không chia hết cho 25) (không thỏa mãn )
\(d=6\Rightarrow\overline{bacd}=4356=66^2\)(Thỏa mãn)\(\Rightarrow\overline{abcd}=3456\)
\(d=9\Rightarrow\overline{bacd}=7689\)(chia hết cho 3 nhưng không chia hết cho 9) (không thỏa mãn )
chia hết cho 2 nhưng không chia hết cho 4) (không thỏa mãn )
Vậy \(\overline{abcd}=3456\)