K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9 
=> bca cũng chia hết cho 9 => bca = 9m (m € N) 
ta có: abc = 27k với (k € N) 
abc - bca = 27k - 9m 
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m) 
<=> 99a - 90b - 9c = 9(3k - m) 
<=> 11a - 10b - c + m = 3k 
<=> 21a - 10(a+b+c) + 9c + m = 3k 
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3 
=> m cũng chia hết cho 3 
=> m = 3n (n € N) 
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm) 

31 tháng 12 2015

thử đi : abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9 
=> bca cũng chia hết cho 9 => bca = 9m (m € N) 
ta có: abc = 27k với (k € N) 
abc - bca = 27k - 9m 
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m) 
<=> 99a - 90b - 9c = 9(3k - m) 
<=> 11a - 10b - c + m = 3k 
<=> 21a - 10(a+b+c) + 9c + m = 3k 
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3 
=> m cũng chia hết cho 3 
=> m = 3n (n € N) 
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm) 

20 tháng 10 2015

1) abc chia hết cho 27

chứng tỏ:a+b+c chia hết cho 27 

Nên bca cũng chia hết cho 27

2) 1 số tạo bới 27 chữ số 1 là: 11111..11( 27 chữ số 1) thì sẽ có tổng:

1+1+1+1+..+1+1 ( 27 số hạng)=27

-=> số tạo bỏi 27 chữ số 1 chia hết cho 27

20 tháng 10 2015

Ta có abc chia hết cho 27

=> 10(100a + 10b + c) chia hết cho 27

=> 1000a + 100b + 10c chia hết cho 27

=> 999a + (100b + 10c + a) chia hết cho 27

Mà 999a chia hết cho 27 

Vậy 100b + 10c + a = bca chia hết cho 27

20 tháng 10 2015

chia hết cho 27 là chia hêt cho 3 và 9 .

abc chia hết cho 9 <=> a+b+c chia hết cho 9

do đó b+c+a chia hết cho 9 .

Vậy bca chia hết cho 27

 

Bạn vào tìm kiếm có câu hỏi tương tự nhé!

8 tháng 8 2021

vãi thật luôn

13 tháng 6 2017

Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9 
=> bca cũng chia hết cho 9 => bca = 9m (m € N) 
ta có: abc = 27k với (k € N) 
abc - bca = 27k - 9m 
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m) 
<=> 99a - 90b - 9c = 9(3k - m) 
<=> 11a - 10b - c + m = 3k 
<=> 21a - 10(a+b+c) + 9c + m = 3k 
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3 
=> m cũng chia hết cho 3 
=> m = 3n (n € N) 
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm) 

13 tháng 6 2017

abc \(⋮\)27

\(\Rightarrow\)abc0 \(⋮\)27

\(\Rightarrow\)1000a + bc0 \(⋮\)27

\(\Rightarrow\)27 . 37a + bca \(⋮\)27

Do 27 . 37a \(⋮\)27 nên bca \(⋮\)27

\(\overline{abc}⋮27\)

\(\Rightarrow\overline{abc0}⋮27\)

\(\Rightarrow\overline{1000a}+\overline{bc0}⋮27\)

\(\Rightarrow999a+a+\overline{bc0}⋮27\)

\(\Rightarrow27.37a+\overline{bca}⋮27\)

do 27.37a chia hết cho 27 suy ra \(\overline{bca}⋮27\)

6 tháng 8 2017

abc : 27 tức là chia hết cho 3 va 9  

vì số nào có tổng chia hết cho 3 và 9 thì chia hết cho 3 và 9 mà bca là đạo ngược các chữ số của abc nên tổng các cs của bca ko thay đổi.

=> bca chia hết cho 27

mk làm linh tinh thôi chứ ko chắc đâu

1 tháng 8 2022

abc : 27 tức là chia hết cho 3 va 9  

vì số nào có tổng chia hết cho 3 và 9 thì chia hết cho 3 và 9 mà bca là đạo ngược các chữ số của abc nên tổng các cs của bca ko thay đổi.

=> bca chia hết cho 27

mk làm linh tinh thôi chứ ko chắc đâu

7 tháng 9 2015

abc chia hết cho 27

=> abc0 chia hết cho 27

=> 1000a + bc0 chia hết cho 27

=> 999a + a + bc0 chia hết cho 27

=> 27.37a + bca chia hết cho 27

Do 27.37a chia hết cho 27 nên bca chia hết cho 27

7 tháng 9 2015

abc chia hết cho 27

=> abc0 chia hết cho 27

=> 1000a + bc0 chia hết cho 27

=> 999a + a + bc0 chia hết cho 27

=> 27.37a + bca chia hết cho 27

Do 27.37a chia hết cho 27 nên bca chia hết cho 27