K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

ta có:

\(\frac{2n+1}{n+2}=\frac{2\left(2n+1\right)}{\left(2n+1\right)+3}\) 

=> Để số đã cho rút gọn được thì 2(2n+1) phải chia hết cho 3

2(2n+1) = 4n+2 = (3+1)n+2 = 3n+n+2 = 3n+(n+2)

=> n+2 chia hết cho 3

=> n = 3k+1 (trong đó k thuộc Z) để phân số \(\frac{2n+1}{n+2}\)rút gọn được.

Ta thấy

- Các số nguyên tố lớn hơn 2 không bao giờ chia hết cho 2

- Nếu p là số nguyên tố thì p^3 chỉ chia hết cho p^2 và p

Vì p^2 +2 là số nguyên tố nên nó không bao giờ chia hết cho 2

=> p^2 không chia hết cho 2 nên p không chia hết cho 2

=> p^3 không chia hết cho 2

Vậy p^3 +2 là số nguyên tố

10 tháng 3 2017

 Chọn câu D S= X4

10 tháng 3 2017

chon D 

ta có 

S = X x X x X x X 

= x^4 

3 tháng 9 2017

a ) \(A=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m^2+3m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)

Vì \(m\left(m+1\right)\left(m+2\right)+5\) và \(m\left(m+1\right)\left(m+2\right)+6\) là hai số tự nhiên liên tiếp 

Do đó \(A=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\) tối giản (đpcm)

b ) Xét mẫu \(m\left(m+1\right)\left(m+2\right)+6\)

Ta thấy \(m\left(m+1\right)\left(m+2\right)\) là tích 3 số tự nhiên liên tiếp nên \(m\left(m+1\right)\left(m+2\right)\text{⋮}3\)

Mà \(6\text{⋮}3\) nên \(\left[m\left(m+1\right)\left(m+2\right)+6\right]\text{⋮}3\)

Mà a lại là phân số tối giản (theo a) nên \(A\) đc viết dưới dạng số thập phân vô hạn tuần hoàn

14 tháng 3 2020

a)Ta có: \(m^3+3m^2+2m+5=m.\left(m^2+3m+2\right)+5\)

                                                       \(=m.\left[m.\left(m+1\right)+2.\left(m+1\right)\right]+5\)

                                                       \(=m.\left(m+1\right).\left(m+2\right)+5\)

Giả sử \(d\) là ƯCLN của  \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\) 

\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) chia hết cho d và \(m.\left(m+1\right).\left(m+2\right)+6\) chia hết cho \(d\)

\( \implies\) \(\left[m.\left(m+1\right).\left(m+2\right)+6\right]-\left[m.\left(m+1\right).\left(m+2\right)+5\right]\) chia hết cho \(d\)

\( \implies\) \(1\) chia hết cho \(d\) 

\( \implies\) \(d=1\) 

\( \implies\)  \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\) nguyên tố cùng nhau 

Vậy \(A\) là phân số tối giản

b)Ta thấy : \(m;m+1;m+2\) là \(3\) số tự nhiên liên tiếp nên nếu \(m\) chia \(3\) dư \(1\) thì \(m+2\) chia hết cho \(3\) ; nếu  \(m\) chia \(3\) dư \(2\) thì \(m+1\) chia hết cho \(3\)

 Do đó : \(m.\left(m+1\right).\left(m+2\right)\) chia hết cho \(3\) . Mà \(6\) chia hết cho \(3\)

\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+6\) có ước nguyên tố là \(3\) 

Vậy \(A\) là số thập phân vô hạn tuần hoàn 

AH
Akai Haruma
Giáo viên
4 tháng 10 2024