K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

Ta có: \(S=5+5^2+5^3+...+5^{2012}\)

\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2007}+5^{2010}\right)+5^{2011}+5^{2012}\)

\(=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{2007}.\left(1+5^3\right)+5^{2011}+5^{2012}\)

\(=5.126+5^2.126+...+5^{2017}.126+6+5^{2011}+5^{2012}\)

\(=126.\left(5+5^2+...+5^{2007}\right)+5^{2011}+5^{2012}\)

Do \(126.\left(5+5^2+...+5^{2007}\right)⋮126\)

\(5^{2011}+5^{2012}⋮̸126\)

\(\Rightarrow126.\left(5+5^2+...+5^{2007}\right)+5^{2011}+5^{2012}⋮̸126\)

hay \(S⋮̸126\)

Vậy ...

22 tháng 7 2017

Thế bạn cho hỏi 630 có chia hết cho 126 ko cái

14 tháng 3 2019

ta có :s=5+5^2+5^3+....+5^2012

=(5+5^4)+(5^2+5^5)+(5^3+5^6)+........+(5^2009+5^2012)

=5x(1+5^3)+5^2x(1+5^3)+5^3x(1+5^3)+.......+5^2009x(1+5^3)

=5x126+5^2x126+5^3x26+......+5^2009x126

=126x(5+5^2+5^3+....+5^2009)

tích này chia hết cho 126

suy ra s chia het cho 126 

chú ý :  dấu x trên là dấu nhân nhé bn

to nha :))

14 tháng 3 2019

chứng minh ko chia hết mà thành long ko cs sai đề đâu

3 tháng 4 2016

Ta có : 

S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )

   = 5 ( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )

   = 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + ... + 52003 . ( 1 + 125 )

   = 5.126 + 52 .126 + 53 . 126 + .... + 52003 . 126

   = 126 ( 5 + 5+ 53 + ... + 52003 )

Vì 126 chia hết cho 126 => S chia hết cho 126 ( đpcm )

29 tháng 7 2016

\(S=5+5^2+5^3+5^4+...+5^{2006}\) 

\(5S=5^2+5^3+5^4+5^5+...+5^{2007}\)

\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{2007}\right)-\left(5+5^2+5^3+5^4+...+5^{2006}\right)\)

\(4S=5^{2017}-5\)

\(S=\frac{5^{2017}-5}{4}\)

\(S=5+5^2+5^3+5^4+....+5^{2006}\)

\(\Rightarrow5S=5\left(5+5^2+5^3+5^4+.....+5^{2006}\right)\)

\(\Rightarrow5S-S=\left(5^2+5^3+....+5^{2007}\right)-\left(5+5^2+5^3+....+5^{2006}\right)\)

\(\Rightarrow4S=5^{2007}-3\)

\(\Rightarrow S=\frac{5^{2007}-3}{4}\)

17 tháng 3 2017

\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+........+\left(5^{2003}+5^{2006}\right)\)

\(S=5\left(1+125\right)+5^2\left(1+125\right)+.........+5^{2003}\left(1+125\right)\)

\(S=126\left(5+5^2+5^3+.........+5^{2003}\right)⋮126\)

Vậy \(S=5+5^2+.........+5^{2006}⋮126\)

17 tháng 3 2017

\(=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)

\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+...+5^{2003}\left(1+5^3\right)\)

\(=5.126+5^2.126+...+5^{2003}.126\)

\(=126\left(5+5^2+...+5^{2003}\right)\)\(⋮126\)\(126⋮126\)

\(\Rightarrow S⋮126\)

26 tháng 2 2016

S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004

=(5+5^2+5^3+5^4)+(5^5+5^6+5^7+5^8)+...+(5^2001+5^2002+5^2003+5^2004)

=780+5^4(5+5^2+5^3+5^4)+...+5^2000(5+5^2+5^3+5^4)

=780(1+5^4+...+5^2000) chia hết cho 65

S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004

=(5+5^2+5^3+5^4+5^5+5^6)+...+(5^1999+5^2000+5^2001+5^2002+5^2003+5^2004)

=19530+...+5^1998(5+5^2+5^3+5^4+5^5+5^6)

=19530(1+...+5^1998) chia hết cho 126

29 tháng 2 2016

Mình chưa học bài này bao giờ lun đó!!!

♡♡♡