Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn giải rõ cho mình với...mình cầu xin bạn đó Nguyễn Thị Hương
Bài 1 :
Ta có : \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Ta chứng minh BĐT \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)
Thật vậy : BĐT \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\) ( đúng )
Vậy \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)
Áp dụng vào bài toán ta có : \(S\ge2+2+2=6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Vậy min \(S=6\) tại \(a=b=c\)
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
Để S lớn nhất thì 1/a, 1/b, 1/c phải lớn nhất
=> S lớn nhất khi a = b = c = 1
=> S = 1/1 + 1/1 + 1/1 = 3
tk nha
1/a+1/b+1/c=1
vì bai trò của a,b,c như nhau nên không mất tính tổng quát ta giả sử a nhỏ hơn hoặc bằng b nhỏ hơn hoặc bằng c
suy ra 1/a lớn hơn hoặc bằng 1/b lớn hơn hoặc bằng 1/c
suy ra 1/a+1/a+1/a lớn hơn hoặc bằng 1/a+1/b+1/c
suy ra a nhỏ hơn hoặc bằng 3 mà 1/a+1/b+1/c=1 nên a>1 vậy a có giá trị lả 2 hoặc 3
* nếu a=3 giải như trên ta có nếu b=2 thì c=6
nếu b=3 thì c=3
*nếu a=2 thì ta có
- nếu b=3 thì c=6
- nếu b=4 thì c=4
tóm lại :
a=3;b=2;c=6
a=b=c=3
a=2;b=3;c=6
a=2;b=c=4
\(S=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1\). Để S lớn nhất thì 1/a, 1/b, 1/c lớn nhất
=> a,b,c là số nguyên dương bé nhất
Nếu a=b=c=3 thì S=1 (loại)
Vậy a=3 ; b=3 ; c=4