K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

Ta có:

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{199}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{1999}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{1999}\right)\)

\(\Rightarrow S⋮3\)(1)

Vì S là tổng các lũy thừa của 2 \(\Rightarrow S⋮2\)(2)

Từ (1) và (2) \(\Rightarrow S⋮6\)

28 tháng 6 2018

\(S=2+2^2+2^3+...+2^{1999}+2^{2000}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{1999}+2^{2000}\right)\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{1999}+2^{2000}\)

\(=6+2^2.6+...+2^{1998}.6\)

\(=\left(1+2^2+...+2^{1998}\right).6\)

S chia hết cho 6

14 tháng 11 2015

bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3

=(...6).(...8)=..8

2003^2004=(2003^4)^501 = ...1

2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2

b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5

c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10 

nếu đúng nhớ tick cho mình nhé

20 tháng 1 2018

Bài giải nè:

8

Cho S = 5 + 5^2 + 5^3 + ... + 5^2003 + 5^2004,Chứng minh S chia hết cho 126,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

Bố thí cho cái  - Give you  :v

10 tháng 2 2019

\(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{39}+3^{40}\right)\)

\(=1\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{38}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{38}\right)⋮12\)

Vậy S cha hết cho 12

24 tháng 2 2020

Câu c :

Bạn tham khảo tại đây nhé 

https://olm.vn/hoi-dap/detail/27025648125.html?pos=97844380070

24 tháng 2 2020

a. 105+98 chia hết cho cả 2 và 9

=) 100000+98 = 100098 \(⋮\)2

xét : 100098 =) 1+0+9+8 =) 18 \(⋮\)9

( ĐPCM )

7 tháng 2 2016

nhóm 3 số vào 1 nhóm rồi ts chúng riêng nhom thứ nhất tính ra luôn

7 tháng 2 2016

S=1+3^2+3^4+3^6+...+3^2002

3^2S=3^2+3^4+3^8+..+3^2004

9S-S=3^2+3^4+3^6+3^8+...+3^2004-1-3^2-3^4-3^6-...-3^2002

8S=3^2004-1

S=(3^2004-1):8

b) (1+3^2+3^4)+...+(3^1998+3^2000+3^2002)

=91+...+3^1998(1+3^2+3^4)

=91(1+...+3^1998) chia hết cho 7

13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

4 tháng 1 2019

a) \(S=4^0+4^1+4^2+...+4^{35}\)

\(S=\left(4^0+4^1+4^2\right)+...+\left(4^{33}+4^{34}+4^{35}\right)\)

\(S=21+...+4^{33}\cdot\left(1+4+4^2\right)\)

\(S=21+...+4^{33}\cdot21\)

\(S=21\cdot\left(1+...+4^{33}\right)⋮21\left(đpcm\right)\)

4 tháng 1 2019

còn b) thì sao bạn ? giải dùm mik luôn đi thanks