Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để Q là số nguyên thì \(a-4⋮a-7\)
\(\Leftrightarrow a-7\in\left\{1;-1;3;-3\right\}\)
hay \(a\in\left\{8;6;10;4\right\}\)
b: Để Q<0 thì \(\dfrac{4-a}{a-7}< 0\)
=>(a-4)/(a-7)>0
=>a>7 hoặc a<4
a)\(n-3\ne0\Leftrightarrow n\ne3\)
b)\(n-3>0\Leftrightarrow n>3\)
c)\(n-3< 0\Leftrightarrow n< 3\)
nek sao bn kì z? giúp ng ta thì giúp cho đàng hoàng nhá. bn ns dài lắm lak xog ak???
Bài 1 :
x < 0 \(\Leftrightarrow\) 3a - 5 < -2 \(\Leftrightarrow\) 3a < 3 \(\Leftrightarrow\) a < 1
Bài 2 :
a) \(\frac{3a-5}{a}=3+\frac{5}{a}\in Z\)\(\Leftrightarrow a\inƯ\left(5\right)\)
\(\Leftrightarrow a\in\left\{-5;-1;1;5\right\}\)
b) \(\frac{2b-7}{b+2}=\frac{2b+4-11}{b+2}=2-\frac{11}{b+2}\in Z\) \(\Leftrightarrow b+2\inƯ\left(11\right)\)
\(\Leftrightarrow b+2\in\left\{-11;-1;1;11\right\}\)
\(\Leftrightarrow b\in\left\{-13;-3;-1;9\right\}\)
Bài 1:
a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)
Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)
b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)
Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Vậy \(a\in\left\{-9;-5;-3;1\right\}\)
Bài 2:
a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)
Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-2;4;6;12\right\}\)
b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)
Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-4;2;4;10\right\}\)
c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)
Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Vậy \(x\in\left\{-14;-4;-2;8\right\}\)
Bài 3:
Gọi \(d\inƯC\left(2m+9;14m+62\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)
Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản
a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)
b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)
c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)
\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)
\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1
Bài 2:
a)\(P=9-2\left|x-3\right|\)
Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)
\(\Rightarrow-2\left|x-3\right|\le0\)
\(\Rightarrow9-2\left|x-3\right|\le9\)
Khi x=3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(Q=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\)
\(\ge\left|x-2+8-x\right|=6\)
Khi \(2\le x\le8\)
....
a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên
b) Ko hiểu
***
A=n+1n−2n+1n−2
a. để B là phân số thì n-2 khác 0 => n khác 2
b.A=n+1n−2n+1n−2= n−2+3n−2n−2+3n−2= n−2n−2n−2n−2+3n−23n−2=1+3n−23n−2
để B nguyên khi n-2 là ước của 3
ta có ước 3= (-1;1;3;-3)
nên n-2=1=> n=3
n-2=-1=> n=1
n-2=3=> n=5
n-2=-3=> n=-1
vậy để A nguyên thì n=(-1;1;3;5)
a. Q= \(\frac{4-a}{a-7}\)=\(\frac{-a+4}{a-7}=\frac{-a+7-3}{a-7}=\frac{-\left(a-7\right)-3}{a-7}=-1-\frac{3}{a-7}\)
mà -1 là số nguyên => để Q nguyên thì a-7 thuộc ước của 3
a-7 thuộc (1;3)
*a-7=1 =>a=1+7 =>a=8
*a-7=3 => a= 3+7 => a=10
cau b,c mô