K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề bài yêu cầu gì vậy bạn?

8 tháng 3 2021

Xét pt: \(x^2-\left(2m+1\right)x+2m-3\)

\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.\left(2m-3\right)\)

\(4m^2+4m+1-8m+12=4m^2-4m+13=\left(2m-1\right)^2+12\) >0\(\forall m\)

=> pt luôn có 2 nghiệm phân biệt

 

\(x^2-2\left(m-1\right)x-2m=0\)

\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)

\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

 

AH
Akai Haruma
Giáo viên
11 tháng 5 2021

Lời giải:

a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)

Khi đó:

\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)

a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)

\(=4m^2-4m+1-4m+4=4m^2-8m+5\)

\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì m-1<0

hay m<1

NV
21 tháng 8 2021

\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)

(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))

Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)

\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\) 

\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)

Thế vào \(x_1x_2=2m\)

\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)

\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)

\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))

17 tháng 6 2022

Cái này phân tích đề ra là lm được bạn nhé

 

9 tháng 11 2019

+) Cho pt: 2x+ mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt

Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)

=> đpcm

+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m;  Tìm m để x12 + x22 - x1x= 5 (*)

Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)

\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)

=> Pt có nghiệm với mọi m

ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)

(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)

    thay (1) và (2) vào (*) ta có: 

\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)

\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)

\(\Leftrightarrow5m^2+4m-8=0\)

\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)

Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x= 5

(Câu này mình nghĩ là tìm m để  x12 + x22 + x1x= 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)

Học tốt nhé!

7 tháng 12 2021

\(1,\Leftrightarrow\Delta=64-4\left(2m+6\right)\ge0\\ \Leftrightarrow40-8m\ge0\\ \Leftrightarrow m\le5\\ 2,\Leftrightarrow\Delta=4\left(m-1\right)^2-4\left(2m-6\right)>0\\ \Leftrightarrow4m^2-8m+4-8m+24>0\\ \Leftrightarrow2\left(m^2-4m+4\right)+6>0\\ \Leftrightarrow2\left(m-2\right)^2+6>0\left(\text{luôn đúng}\right)\\ \Leftrightarrow m\in R\)

Ta có : \(x^2-2\left(m-1\right)x+2m-5=0\left(a=1;b=-2m+2;c=2m-5\right)\)

a, Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(\left(-2m+2\right)^2-4\left(2m-5\right)=4m^2+4-8m+20=4m^2-8m+24>0\)

b, Theo hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=2m-5\)

Theo bài ra ta có : mk để \(x_1;x_2\)lần lượt là \(a;b\)nhé 

\(\left(a^2-2ma-b+2m-3\right)\left(b^2-2mb-a+2m-3\right)=19\)

Do a;b là nghiệm nên a;b thỏa mãn pt đã cho nghĩa : \(\hept{\begin{cases}a^2-2\left(m-1\right)a+2m-5=0\\a^2-2\left(m-1\right)b+2m-5=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-2a+2\\-2b+2\end{cases}}\)Thay vào pt trên ta đc : \(\left(-2a+2\right)\left(-2b+2\right)=19\)

\(\Leftrightarrow4ab+2a^2-4a+2b^2+ab-2b-4b-2a+4=19\)

\(\Leftrightarrow2\left(a+b\right)^2-6\left(a+b\right)+ab=15\) Thay vào ta lại có pt mới : 

\(2\left(2m-2\right)^2-6\left(2m-2\right)+2m-5=15\)

\(\Leftrightarrow2\left(4m-4\right)-12m+12+2m-5-15=0\)

\(\Leftrightarrow8m-8-12m+2m+12-5-15=0\)

\(\Leftrightarrow-2m-16=0\Leftrightarrow-2m=16\Leftrightarrow m=-8\)

27 tháng 4 2019

\(x^2-\left(2m+3\right)x-2m-4=0\)

Ta có \(\Delta=\left(2m+3\right)^2+4\left(2m+4\right)\)

              \(=4m^2+12m+9+8m+16\)

              \(=4m^2+20m+25\)

               \(=\left(2m+5\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow m\ne-\frac{5}{2}\)

theo Viet \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1x_2=-2m-4\end{cases}}\)

Ta cso \(\left|x_1\right|+\left|x_2\right|=5\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=5\)

\(\Leftrightarrow x_1^2+2\left|x_1x_2\right|+x_2^2=5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=5\)

\(\Leftrightarrow\left(2m+3\right)^2-2\left(-2m-4\right)+2\left|-2m-4\right|=5\)

\(\Leftrightarrow4m^2+12m+9+4m+8+4\left|m+2\right|=5\)

\(\Leftrightarrow4m^2+16m+4\left|m+2\right|+12=0\)

Đến đấy bạn xét khoảng của m so với -2 là xong