Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
a/ Bạn tự giải
b/ \(\Delta'=\left(1-m\right)^2+3-m=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\) \(\forall m\)
\(\Rightarrow\) pt luôn có 2 nghiệm pb
c/ Theo Viet: \(x_1+x_2=-2\left(1-m\right)\)
Để pt có 2 nghiệm đối nhau \(\Leftrightarrow x_1=-x_2\Leftrightarrow x_1+x_2=0\)
\(\Rightarrow-2\left(1-m\right)=0\Rightarrow m=1\)
\(\Delta=\left(m-2\right)^2-4\left(m-4\right)=m^2-8m+20=\left(m-4\right)^2+4>0\forall m\)
\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt
Để pt có 2 nghiệm đối nhau \(\Rightarrow x_1=-x_2\Rightarrow x_1+x_2=0\)
\(\Rightarrow\frac{-b}{a}=0\Rightarrow m-2=0\Rightarrow m=2\)
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)
a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)
\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\)
\(\Leftrightarrow4>0\)(luôn đúng)
Vậy phương trình có 2 nghiệm phân biệt với mọi m.
b) Để t nghĩ tí
\(x^2-2\left(m-1\right)x+m-3=0\left(a=1;b=-2m+2;c=-3\right)\)
a, Ta có : \(\left(-2m+2\right)^2-4\left(m-3\right)=4m^2+4-4m+12=4m^2+16-4m\)
Dùng HĐT mà giải nốt