\(\frac{x+\sqrt{x}+1}{\sqrt{x}}\) . Tìm x để P\(\sqrt{x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2019

1/ \(\sqrt{x-2}-\sqrt{1-3x}=0\\ đk:\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)

=> pt vô no

2/ \(\sqrt{15-x}+\sqrt{3-x}=6\\ đk\left\{{}\begin{matrix}15-x\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le15\\x\le3\end{matrix}\right.\Leftrightarrow x\le3\)

\(pt\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)

\(\Leftrightarrow2\sqrt{\left(15-x\right)\left(3-x\right)}=2x+36\)

\(\Leftrightarrow4\left(15-x\right)\left(3-x\right)=\left(2x+18\right)^2\left(đk:x\ge-9\right)\)

\(\Leftrightarrow-144x=144\Leftrightarrow x=-1\left(nhan\right)\)

NV
16 tháng 5 2019

Câu 1: ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ \(\Rightarrow\) pt vô nghiệm

Câu 2:

ĐKXĐ: \(x\le3\)

\(\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)

\(\Leftrightarrow x+9=\sqrt{x^2-18x+45}\) (\(x\ge-9\))

\(\Leftrightarrow x^2+18x+81=x^2-18x+45\)

\(\Leftrightarrow36x=-36\Rightarrow x=-1\)

Câu 3:

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\)

\(\Leftrightarrow x-1=4+x+1+4\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}=-\frac{3}{2}\)

Phương trình vô nghiệm

NV
10 tháng 8 2020

6.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2\end{matrix}\right.\)

NV
10 tháng 8 2020

4.

ĐKXĐ: \(x\ge4\)

Đặt \(\sqrt{x-4}=t\ge0\Rightarrow x=t^2+4\)

\(\Rightarrow3\left(t^2+4\right)+7t=14t-20\)

\(\Leftrightarrow3t^2-7t+34=0\)

Phương trình vô nghiệm

5.

ĐKXĐ: ...

- Với \(x=0\) ko phải nghiệm

- Với \(x\ne0\Rightarrow\sqrt{x+1}-1\ne0\) , nhân 2 vế của pt cho \(\sqrt{x+1}-1\) và rút gọn ta được:

\(\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)

\(\Leftrightarrow2x=4\Rightarrow x=2\)

21 tháng 8 2017

Đề có sai ko bn?Phương Phan Thùy