Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=mx^2-2mx-m^2-1\)
\(=m\left(x^2-2x\right)-m^2-1\)
Điểm cố định của (d) có tọa độ là:
\(\left\{{}\begin{matrix}x^2-2x=0\\y=-m^2-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(x-2\right)=0\\y=-m^2-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;2\right\}\\y=-m^2-1\end{matrix}\right.\)
TH1: x=0
Thay x=0 và \(y=-m^2-1\) vào y=x-2, ta được:
\(-m^2-1=0-2=-2\)
=>\(m^2+1=2\)
=>\(m^2=1\)
=>\(\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
TH2: x=2
Thay x=2 và \(y=-m^2-1\) vào y=x-2, ta được:
\(-m^2-1=2-2=0\)
=>\(m^2+1=0\)
=>\(m^2=-1\)(vô lý)
\(x^2-\left(m-2\right)x+m\left(m-3\right)=0\)
\(\Leftrightarrow x^2-\left(m-2\right)x+\left(m^2-3m\right)=0\) (*)
\(\Delta'=\left(m-2\right)^2-\left(m^2-3m\right)\)
\(=m^2-4m+4-m^2+3m\)
\(=4-m\). Để (*) có 2 nghiệm phân biệt suy ra \(\Delta'>0\)
\(\Rightarrow4-m>0\Rightarrow m< 4\)
Vậy với m=4 (*) có 2 nghiệm phân biệt
câu a
đường thẳng (d') là đường thẳng cần tìm
d' // d nên d' có dạng x-y +c = 0 với c khác 0
lấy điểm bất kì thuộc (d) là O(0,0) lấy đối xứng O qua M ta được O' ( 4, 2) vậy O' thuộc (d')
4−2+c=0⇒c=−2⇒(d′):x−y−2=0
Câu b
Viết pt đường thẳng (a) qua M và vuông góc với (d)
(a) cắt (d) tại đâu ta được hình chiếu H của M
Gọi (P):y=x2-2mx+m+3 (D):y=x+2
Cho S là điểm thấp nhất của đồ thị hàm số (P)
xs=\(-\dfrac{b}{2a}=-\dfrac{-2m}{2.1}\)=m
yS=-delta/4=\(-\dfrac{b^2-4ac}{4a}=-\dfrac{\left(-2m\right)^2-4\left(m+3\right)}{4}=-\dfrac{4m^2-4m-12}{4}\)=-m2+m+3
Vậy tọa độ đỉnh là S(m;-m2+m+3)
Theo đề bài thì S thuộc (D) khi yS=xS+2
thế vào ta có -m2+m+3=m+2
tương đương: m2=1 suy ra m=1 (nhận) hoặc m=-1 (loại) vì m>0
Vậy hàm số (P):y=m2-2x+4