K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

cau a: pt chính tắc của đường tròn là: \(\left(x-m\right)^2+\left(y+m\right)^2=\left(\sqrt{m^2+2m-3}\right)^2\left(C\right)\)

​tâm I \(\left(m;-m\right)\) .​bán kính R =\(\sqrt{m^2+2m-3}\)

điều kiện để tồn tại đườn tròn (C) la: -3<m hoặc m> 1 (1)

(C) tiếp xúc với 2 trục tọa độ \(\Leftrightarrow\left|m\right|=\left|-m\right|=R\)

​th1: m =m va \(\sqrt{m^2+2m-3}=\left|m\right|\Leftrightarrow m=3\) . kết hợp với điều kiện (1) \(\Rightarrow m=3\)

th2 : m=-m \(\Rightarrow m=0\) loai vi dieu kien (1)

cau b:truc Ox co phuong trinh la : y= 0.

giao điểm A, B cua (C) voi Ox thoa :\(\left\{{}\begin{matrix}y=0\\\left(x-m\right)^2=2m-3\left(m>\dfrac{3}{2}\right)\left(\circledast\right)\end{matrix}\right.\Rightarrow A\left(m+\sqrt{2m-3},0\right),B\left(m-\sqrt{2m-3},0\right)\)

bai ra AB=2 \(\Leftrightarrow\left|m-\sqrt{2m-3}-m-\sqrt{2m-3}\right|=2\)

\(\left|\sqrt{2m-3}\right|=1\Rightarrow\left[{}\begin{matrix}m=2\\m=1\end{matrix}\right.\)\(\Leftrightarrow m=2\left(thoa\circledast\right)\)

​vậy m=2

8 tháng 4 2017

đính chính:m>1 ;m<-3

28 tháng 6 2020

Sửa dòng cuối bạn nhé! :3

\(\left[{}\begin{matrix}\left(C_m\right):x^2+y^2-6x-20y+5=0\\\left(C_m\right):x^2+y^2-6x+28y+5=0\end{matrix}\right.\)

NV
3 tháng 5 2019

Thay \(y=0\) vào pt (C) ta được: \(\left(x+2\right)^2=-11\) (vô nghiệm)

\(\Rightarrow\)Ox không cắt (C)

Gọi \(I\left(-2;4\right)\) là tâm đường tròn và \(M\left(a;0\right)\)

Theo tính chất tiếp tuyến ta có \(IA\perp MA\Rightarrow\Delta IMA\) vuông tại A

\(\Rightarrow MA=\sqrt{IM^2-IA^2}=\sqrt{IM^2-R^2}\)

\(\Rightarrow MA\) ngắn nhất khi \(IM\) nhỏ nhất \(\Rightarrow M\) là hình chiếu vuông góc của I lên Ox \(\Rightarrow M\left(-2;0\right)\)

22 tháng 10 2020

Đề có sai không!?

27 tháng 7 2017

@Nguyễn Huy Tú @Ace Legona@Akai Haruma

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

Lời giải:

PT hoành độ giao điểm:

\(x^2+4x-3-(-mx-3)=0\)

\(\Leftrightarrow x^2+x(4+m)=0\)

\(\Leftrightarrow x(x+4+m)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ x=-(m+4)\end{matrix}\right.\)

Để 2 đths cắt nhau tại hai điểm pb thì \(-(m+4)\neq 0\leftrightarrow m\neq -4\)

Khi đó 2 điểm A,B là: \(A(0; -3); B(-m-4, m^2+4m-3)\)

Để trung điểm $I$ của $AB$ nằm trên trục $Ox$ thì \(y_I=0\)

\(\Leftrightarrow \frac{y_A+y_B}{2}=0\)

\(\Leftrightarrow \frac{-3+m^2+4m-3}{2}=0\)

\(\Leftrightarrow m^2+4m-6=0\Rightarrow m=-2\pm \sqrt{10}\)

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)

c: Điểm M,N ở đâu vậy bạn?