\(x^2\)+ 2 ( m - 1)x + m - 1 = 0

Tìm m để phương trình có nghiệm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

pt vó nghiệm kép tương đương đen ta phẩy =0

tức (m-1)^2-(m-1)=0

m^2-2m+1-m+1=0

m^2-3m+2=0

m=1 hoặc m=2

 
3 tháng 4 2020

phương trình vô nghiệm kép tương đương đen phảy = 0 

tức ( m - 1 ) ^ 2 - ( m - 1 ) = 0

m^2 - 2 m + 1 - m + 1 = 0 

m ^2 - 3m + 2 = 0

m = 1 hoặc m = 2

19 tháng 5 2020

a) PT có nghiệm kép nếu

\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)^2+m\left(m-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne1\\\left(m-1\right)\left(2m-1\right)=0\end{cases}\Leftrightarrow}m=\frac{1}{2}}\)

Vậy \(m=\frac{1}{2}\)thì pt có nghiệm kép

\(x_1=x_2=-\frac{b}{2a}=-\frac{2\left(m-1\right)}{2\left(m-1\right)}=-1\)

b) Để pt có nghiệm phân biệt đều âm thì

\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)\left(2m-1\right)>0\end{cases}}\)

\(\hept{\begin{cases}x_1\cdot x_2=-\frac{m}{m-1}>0\\x_1+x_2=\frac{2\left(m-1\right)}{m-1}< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}m>1\\m< \frac{1}{2}\end{cases}}\)và \(0< m< 1\)

Vậy 0<m<\(\frac{1}{2}\)

19 tháng 5 2020

định gõ ấn f5 cái thì thấy bạn làm xong r :(( 

giải nhanh quá ! 

24 tháng 3 2020

Đk: 3m - 1 >= 0 <=> m>= 1/3

Để phương trình có nghiệm kép 

<=> \(\Delta=4.\left(3m-1\right)-4\sqrt{m^2-6m+17}=0\)

<=> 9m2 - 6m + 1 = m2 - 6m + 17

<=> 8m2 = 16

<=> \(m=\sqrt{2}\)(Vì m >= 1/3).

Vậy với m = căn 2 thì phương trình có nghiệm kép.

x1 = x2 = \(-2\sqrt{3\sqrt{2}-1}\)

18 tháng 10 2019

a) pt có nghiệm kép \(\Leftrightarrow\)\(\Delta=45-12m=0\)\(\Leftrightarrow\)\(m=\frac{15}{4}\)

b) Viet \(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=3m-11\end{cases}}\)

\(2019=2017x_1+2018x_2=2017\left(x_1+x_2\right)+x_2=2017+x_2\)\(\Leftrightarrow\)\(x_2=2\)\(\Rightarrow\)\(x_1=-1\)

\(\Rightarrow\)\(3m-11=-2\)\(\Leftrightarrow\)\(m=3\)

13 tháng 4 2020

a) Ta có: \(\Delta=45-12m\). Để pt có nghiệm kép thì:

\(\Delta=45-12m=0\)

\(\Leftrightarrow m=\frac{15}{4}\Rightarrow x_1=x_2=\frac{1}{2}\)

b) Để pt (1) có 2 nghiệm phân biệt x1;x2 thì \(\Delta=45-12m>0\)

\(\Leftrightarrow m< \frac{15}{4}\). Theo hệ thức Vi-et x1+x2=1; x1x2=3m-11. Khi đo hệ:

\(\hept{\begin{cases}x_1+x_2=1\\2017x_1+2018x_2=2019\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=-1\\x_2=2\end{cases}}}\)

Mà ta có: x1x2=3m-11

<=> m=3 (nhận)

Vậy m=3 là giá trị cần tìm

15 tháng 5 2020

Để pt có nghiệm kép suy ra delta = 0

Ta có : \(\Delta=\left(2\sqrt{3m-1}\right)^2-4\sqrt{m^2-6m+17}=0\)

\(< =>4\left(3m-1\right)-4\sqrt{m^2-6m+17}=0\)

\(< =>4\left(3m-1-\sqrt{m^2-6m+17}\right)=0\)

\(< =>3m-1-\sqrt{m^2-6m+17}=0\)

\(< =>\left(3m-1\right)^2=\sqrt{m^2-6m+17}^2\)

\(< =>\left(3m\right)^2-2.3m+1^2=m^2-6m+17\)

\(< =>9m^2-6m=m^2-6m+16\)

\(< =>9m^2-6m-\left(m^2-6m+16\right)=0\)

\(< =>9m^2-m^2-6m+6m-16=0\)

\(< =>8m^2-16=0\)\(< =>m^2-2=0\)

\(< =>\orbr{\begin{cases}m=-\sqrt{2}\\m=\sqrt{2}\end{cases}}\)

Đúng ko ạ ? 

29 tháng 4 2020

Để phương trình có nghiệm kép: \(\Delta=0\)

<=> \(\left(\sqrt{3m-1}\right)^2-\sqrt{m^2-6m+17}=0\)

<=> \(\sqrt{m^2-6m+17}=3m-1\)

<=> \(\hept{\begin{cases}m^2-6m+17=9m^2-6m+1\\3m-1\ge0\end{cases}}\)

<=> \(\hept{\begin{cases}m^2-2=0\\m\ge\frac{1}{3}\end{cases}}\Leftrightarrow m=\sqrt{2}\)

Vậy:...

8 tháng 4 2018

a) Tìm m sao cho \(\Delta=0\)rồi thay vào pt tìm nghiệm
b)\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=2^2-2.\left(1+2m\right)=8\Rightarrow m=-\frac{3}{2}\)

8 tháng 4 2018

Cho mình bổ sung thêm phần xác định m chút nha

Áp dụng hệ thức viets vào phương trình (1 ) ta có

\(x_1+x_2=S=-2;x_1.x_2=p=1+2m\)  Hai số x1 và x2 tồn tại khi \(S^2-4P\ge0\Leftrightarrow4-4\left(1+2m\right)\ge0\)=> \(-8m\ge0\Rightarrow m\le0\)