\(x^2+px-1=0\)(p lẻ) có 2 nghiệm phân biệt x1,x2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

Có: \(\Delta=p^2+4>0\), mọi p 

=> phương trình luôn có 2 nghiệm phân biệt .

Áp dụng định lí Viet ta có:

\(x_1+x_2=-p\)

\(x_1.x_2=-1\)

Ta cần chứng minh với  n là số tự nhiên:  \(S_{n+2}=-pS_{n+1}+S_n\)  (1)

+)  Với  \(S_0=x_1^o+x_2^o=2\);\(S_1=-p\)

 \(S_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=p^2+2=-pS_1+S_2\)

=>(1)  đúng với  n = 0.

+) G/s : (1) đúng với  n

+) Chứng minh (1) đúng  (1) đúng với n +1

Ta có: \(S_{n+1}=x_1^{n+1}+x_2^{n+1}=\left(x_1^n+x_2^n\right)\left(x_1+x_2\right)-x_1x_2\left(x_1^{n-1}+x_1^{n-2}\right)\)

\(=-pS_n+S_{n-1}\)

=> (1) đúng với n +1

Vậy với mọi số tự nhiên n: \(S_{n+2}=-pS_{n+1}+S_n\)(1)

G/s: \(\left(S_n;S_{n+1}\right)=d\)

=> \(\hept{\begin{cases}S_{n+1}=-pS_n+S_{n-1}⋮d\\S_n⋮d\end{cases}}\Rightarrow S_{n-1}⋮d\)

=> \(\hept{\begin{cases}S_n=-pS_{n-1}+S_{n-2}⋮d\\S_{n-1}⋮d\end{cases}}\Rightarrow S_{n-2}⋮d\)

.....

Cứ tiếp tự như vậy 

=> \(S_0⋮d;S_1⋮d\)

=> \(\hept{\begin{cases}2⋮d\Rightarrow d\in\left\{\pm1;\pm2\right\}\\-p⋮d\Rightarrow d\in\left\{\pm1;\pm p\right\}\end{cases}}\)

Mà p là số lẻ 

=> d =1

=> \(S_n;S_{n-1}\)là hai số nguyên tố cùng nhau.

NV
5 tháng 5 2020

\(\Delta=25-4\left(m+4\right)=9-4m\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+4\end{matrix}\right.\)

a/ \(\Delta>0\Rightarrow m< \frac{9}{4}\)

\(x_1^2+x_2^2=23\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=23\)

\(\Leftrightarrow25-2\left(m+4\right)=23\Rightarrow m+4=1\Rightarrow x=-3\) (t/m)

b/ \(\Delta\ge0\Rightarrow m\le\frac{9}{4}\)

Để pt có nghiệm khác 0 thì \(m\ne-4\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-3\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-3\)

\(\Leftrightarrow\frac{25-2\left(m+4\right)}{m+4}=-3\)

\(\Leftrightarrow-m-4=25\Rightarrow m=-29\) (t/m)

20 tháng 1 2019

Có \(\Delta=9-8=1>0\)

Nên pt luôn có 2 nghiệm

Theo hệ thức Vi-ét có

\(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=2\end{cases}}\)

*Lập pt bậc 2 ẩn y

Có \(S_y=y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}\)

                            \(=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)

                             \(=3+\frac{3}{2}\)

                             \(=\frac{9}{2}\)

  \(P_y=y_1.y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\)

                    \(=x_1x_2+1+1+\frac{1}{x_1x_2}\)

                    \(=2+2+\frac{1}{2}\)

                    \(=\frac{9}{2}\)

Vậy pt cần lập có dạng \(y^2-Sy+P=0\)

                            \(\Leftrightarrow y^2-\frac{9}{2}+\frac{9}{2}=0\)

                           \(\Leftrightarrow2y^2-9y+9=0\)

NV
13 tháng 3 2019

\(ac=-1< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-1\end{matrix}\right.\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{10}{3}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+\frac{10}{3}=0\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}+\frac{10}{3}=0\Leftrightarrow\frac{4\left(m-1\right)^2+2}{-1}+\frac{10}{3}=0\)

\(\Leftrightarrow4m^2-8m+\frac{8}{3}=0\Rightarrow\left[{}\begin{matrix}m=\frac{3+\sqrt{3}}{3}\\m=\frac{3-\sqrt{3}}{3}\end{matrix}\right.\)