Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+4\right)^2-\left(m^2-8\right)=8m+24\ge0\Rightarrow m\ge-3\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2-8\end{matrix}\right.\)
a/ \(A=x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2\)
\(=4\left(m+4\right)^2-5\left(m^2-8\right)\)
\(=-m^2+32m+104=360-\left(m-16\right)^2\le360\)
\(A_{max}=360\) khi \(m=16\)
\(B=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=4\left(m+4\right)^2-3\left(m^2-8\right)\)
\(=m^2+32m+88=\left(m+3\right)\left(m+29\right)+1\ge1\)
\(\Rightarrow B_{min}=1\) khi \(m=-3\)
b/ Từ Viet: \(\left\{{}\begin{matrix}\frac{x_1+x_2-8}{2}=m\\x_1x_2+8=m^2\end{matrix}\right.\)
\(\Rightarrow\left(\frac{x_1+x_2-8}{2}\right)^2=x_1x_2+8\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m (bạn có thể rút gọn thêm)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)
\(A=m^2+3+2m+2=m^2+2m+5=\left(m+1\right)^2+4\ge4\)
Dấu ''='' xảy ra khi m = -1
Vậy GTNN A là 4 khi m =-1
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
Có \(\Delta'=\left(m+4\right)^2-m^2+8=m^2+8m+16-m^2+8=24>0\)
Nên pt có nghiệm với mọi m
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2-8\end{cases}}\)
a,(Phải là GTLN nhá)
Có \(x_1+x_2-3x_1x_2=2\left(m+4\right)-3\left(m^2-8\right)\)
\(=2m+8-3m^2+24\)
\(=-3m^2+2m+32\)
\(=-3\left(m^2-\frac{2}{3}m+\frac{1}{9}\right)+\frac{95}{3}\)
\(=-3\left(m-\frac{1}{3}\right)^2+\frac{95}{3}\le\frac{95}{3}\)
Dấu "=" <=> m = 1/3
b, Thấy tổng x_1 ; x_2 là bậc 1 của m , tích là bậc 2 của m nên ko tồn tại hệ thức thỏa mãn đề