Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có : △' = (-2)2-(m+3)
=4-m-3 = 1-m
De ptr co 2 nghiem x1 va x2 thì △' ≥0
=>1-m≥0 =>m≤1
Theo Viei{ x1+x2=4 ; x1x2=m+3
Ta co: |x1-x2|=2 ⇔(x1-x2)2=4
⇔(x1+x2)2-4x1x2=4
⇔42-4(m+3)=4
⇔m=0 (TM)
b/ Ta co: △ = (m-1)2-4(m+6)
=m2-6m-23 De ptr co 2 nghiem x1 , x2 thi △≥ 0
=> m2-6m-23≥0 (*)
Theo viet { x1+x2=1-m ; x1x2=m+6
db <=> ( x1+x2)2-2x1x2=10
⇔ (1-m)2-2(m+6)=10
⇔ m2-4m -21 =0
⇔[m=7 ; m=-3
Thay vao (*) =>m=7 (loai) ; m=-3 (tm)
c/ Ta co :△' = (-m)2-(3m-2)
= m2-3m+2
De ptr co 2 nghiem x1 , x2 thi : △' ≥0
⇔m2-3m+2≥0 (*)
Theo viet { x1+x2=2m ; x1x2=3m-2
db <=> ( x1+x2)2-3x1x2=4
⇔ (2m)2-3(3m-2)=4
⇔ 4m2--9m+2 =0
⇔[m=2 ; m=\(\dfrac{1}{4}\)
Thay vao (*) =>m=2 (tm) ; m=\(\dfrac{1}{4}\) (tm)
d/ Ta co : △=(-3)2-4(m-2)
=17-4m
De ptr co 2 nghiem x1 , x2 thi : △ ≥0
⇔17-4m≥0
⇔m≤\(\dfrac{17}{4}\)
theo viet{ x1+x2=3 ; x1x2= m-2
⇔(x1+x2)3-3x1x2(x1+x2) =9
⇔33-3.3(m-2)=9
⇔m=4(tm)
để pt có 2 nghiệm x1,x2 => Δ'≥0
\(\Leftrightarrow\left(m+1\right)^2-m^2-2\ge0\)
\(\Leftrightarrow m^2+2m+1-m^2-2\ge0\Leftrightarrow2m\ge1\Leftrightarrow m\ge\frac{1}{2}\)
Theo viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1\cdot x_2=m^2+2\end{matrix}\right.\)
\(\left|x_1^4-x_2^4\right|=\left|\left(x_1^2-x_2^2\right)\left(x_1^2+x_2^2\right)\right|=\left|\left(x_1+x_2\right)\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\right|=0\)
+) \(x_1+x_2=0\Leftrightarrow2\left(m+1\right)=0\Leftrightarrow m=-1\) (loại)
+) \(x_1-x_2=0\Leftrightarrow\left(x_1-x_2\right)^2=0\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\Leftrightarrow\left(2m+2\right)^2-4\left(m^2+2\right)=0\Leftrightarrow4m^2+8m+4-4m^2-8=0\Leftrightarrow8m=4\Leftrightarrow m=\frac{1}{2}\left(tm\right)\)
+) \(\left(x_1+x_2\right)^2-2x_1x_2=0\)
\(\Leftrightarrow\left(2m+2\right)^2-2\left(m^2+2\right)=0\)
\(\Leftrightarrow4m^2+8m+4-2m^2-4=0\)
\(\Leftrightarrow2m^2+8m=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)(ktm)
Vậy m = \(\frac{1}{2}\)
\(\Delta'=\left(m-1\right)^2-m+3=m^2-3m+4>0;\forall m\)
Pt luôn có 2 nghiệm pb thỏa \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-3\end{matrix}\right.\)
\(A=\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}\)
\(=\sqrt{4\left(m-1\right)^2-2\left(m-3\right)}\)
\(=\sqrt{4m^2-10m+10}=\sqrt{4\left(m-\frac{5}{4}\right)^2+\frac{15}{4}}\ge\sqrt{\frac{15}{4}}\)
\(A_{min}=\frac{\sqrt{15}}{2}\)
Cho phương trình (m−1)x2 + 3x − 1=0
a , Tìm m để phương trình có hai nghiệm dương phân biệt
Để pt có 2 nghiệm dương phân biệt thì
✱△ > 0
△ = 32 - 4.(-1).(m-1) = 4m + 5 > 0 ⇔ m > \(\frac{-5}{4}\)
✱ S > 0
\(\frac{-3}{m-1}\) > 0 ⇔ m -1 < 0 ⇔ m < 1
✱ P > 0
\(\frac{-1}{m-1}\) > 0 ⇔ m - 1 < 0 ⇔ m < 1
Vậy m ∈ (\(\frac{-5}{4}\); 1) thì phương trình có 2 nghiệm dương phân biệt.
Để pt có 2 nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m+1\right)^2-m\left(m-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\3m+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ge-\frac{1}{3}\end{matrix}\right.\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m+1\right)}{m-1}\\x_1x_2=\frac{m}{m-1}\end{matrix}\right.\)
\(\left|x_1-x_2\right|\ge2\Leftrightarrow\left(x_1-x_2\right)^2\ge4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge4\)
\(\Leftrightarrow4\left(\frac{m+1}{m-1}\right)^2-\frac{4m}{m-1}\ge4\)
\(\Leftrightarrow\left(1+\frac{2}{m-1}\right)^2-\left(1+\frac{1}{m-1}\right)-1\ge0\)
Đặt \(\frac{1}{m-1}=t\)
\(\Rightarrow\left(2t+1\right)^2-\left(t+1\right)-1\ge0\)
\(\Leftrightarrow4t^2+3t-1\ge0\Rightarrow\left[{}\begin{matrix}t\ge\frac{1}{4}\\t\le-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{m-1}\ge\frac{1}{4}\\\frac{1}{m-1}\le-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{5-m}{m-1}\ge0\\\frac{m}{m-1}\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1< m\le5\\0\le m< 1\end{matrix}\right.\)
\(\Rightarrow m_{max}=5\)
PT có 2 nghiệm \(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2+2\right)\ge0\)
\(\Leftrightarrow4m^2+8m+4-4m^2-8\ge0\\ \Leftrightarrow8m-4\ge0\Leftrightarrow m\ge\dfrac{1}{2}\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=8m-4\\ x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=2m^2+8m\)
Ta có \(\left|x_1^4-x_2^4\right|=\left(x_1^2+x_2^2\right)\left|x_1-x_2\right|\left|x_1+x_2\right|\)
\(\Leftrightarrow\left|x_1^4-x_2^4\right|=\left(2m^2+8m\right)\sqrt{\left(x_1-x_2\right)^2}\left|2m+2\right|\\ =8\left(m^2+4m\right)\left|m+1\right|\sqrt{2m-1}\)
Mà \(\left|x_1^4-x_2^4\right|=16m^2+64m=16\left(m^2+4m\right)\)
\(\Leftrightarrow\left(m^2+4m\right)\left|m+1\right|\sqrt{2m-1}-2\left(m^2+4m\right)=0\\ \Leftrightarrow\left(m^2+4m\right)\left(\left|m+1\right|\sqrt{2m-1}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(ktm\right)\\m=-4\left(ktm\right)\\\left|m+1\right|\sqrt{2m-1}=2\end{matrix}\right.\\ \Leftrightarrow\left(m+1\right)^2\left(2m-1\right)=4\\ \Leftrightarrow2m^3+3m^2-5=0\\ \Leftrightarrow2m^3-2m^2+5m^2-5=0\\ \Leftrightarrow2m^2\left(m-1\right)+5\left(m-1\right)\left(m+1\right)=0\\ \Leftrightarrow\left(m-1\right)\left(2m^2+5m+5\right)=0\\ \Leftrightarrow m=1\left(2m^2+5m+5>0\right)\left(tm\right)\)
Vậy \(m=1\) thỏa mãn đề bài