K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

PT có 2 nghiệm phân biệt:

\(\Delta^'\)> 0

<=> (a - 1)2 - 3(2a - 5)2 > 0

<=> a2 - 2a + 1 - 3(4a2 - 20a + 25) > 0

<=> a2 - 2a + 1 - 12a2 + 60a - 75 > 0

<=> -11a2 + 58a - 74 > 0

<=> \(\frac{-29+\sqrt{27}}{-11}\)< a < \(\frac{-29-\sqrt{27}}{-11}\)

12 tháng 3 2021

đẽ vãi

26 tháng 4 2018

\(a)\) Thay \(m=-1\) vào phương trình \(x^2+2\left(m-1\right)x+m^2=0\) ta được : 

\(x^2+2\left(-1-1\right)x+\left(-1\right)^2=0\)

\(\Leftrightarrow\)\(x^2+2x.\left(-2\right)+1=0\)

\(\Leftrightarrow\)\(x^2-4x+1=0\)

\(\Leftrightarrow\)\(x^2-4x=-1\)

\(\Leftrightarrow\)\(x\left(x-4\right)=-1\)

Ta có bảng : 

\(x\)\(1\)\(-1\)
\(x-4\)\(-1\)\(1\)
\(x\)\(1\) ( loại ) \(-1\) ( loại ) 
\(x\)\(3\) ( loại ) \(5\) ( loại ) 

Vậy khi \(m=-1\) thì không có giá trị của x thoã mãn phương trình 

Chúc bạn học tốt ~ 

27 tháng 8 2018

a) Thay m =\(-1\)vào PT ta có:

\(x^2-2\left(-1-1\right)x+\left(-1\right)^2=0\)

\(\Leftrightarrow x^2-4x+1=0\)

\(\Delta^,=2^2-1=3\)

Vậy PT có 2 nghiệm \(2+\sqrt{3},2-\sqrt{3}\)

b) PT có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta^,=\left(m-1\right)^2-m^2=-2m+1>0\Leftrightarrow m>\frac{1}{2}\)

Vậy khi m >\(\frac{1}{2}\),PT có 2 nghiệm phân biệt.

9 tháng 2 2015

Đen ta =9(a+1)^2 - 4.a.(2a+4) (*) .Để phương trình có 2 nghiệm phân biệt thì đen ta >0 →(*) luôn đúng→x1=...;x2=... rồi thay vào biểu thức 

phải ko nhể,có giống cách bạn làm ko ?

4 tháng 7 2020

a, Để phương trình có 2 nghiệm phân biệt thì 

\(\Delta>0< =>\left(-2m\right)^2-4.\left(2m^2-1\right)>0\)

\(< =>4m^2-8m^2+4>0\)

\(< =>-4m^2+4>0\)

\(< =>m< 1\)

b, bạn dùng viet và phân tích 1 xíu là ok

Ta có : \(x^2-2mx+2m^2-1=0\left(a=1;b=-2m;c=2m^2-1\right)\)

a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)

 \(\left(-2m\right)^2-4\left(2m^2-1\right)>0\)

\(\Leftrightarrow4m^2-8m^2+4>0\Leftrightarrow-4m^2+4>0\)

\(\Leftrightarrow-4m^2>-4\Leftrightarrow m< 1\)

b, Theo hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\P=x_1x_2=\frac{c}{a}=\frac{2m^2-1}{1}=2m^2-1\end{cases}}\)

Ta có : \(x_1^3-x_1^2+x_2^3-x_2^2=2\)

Ta có thể viết là : \(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=2\)tương tự vs \(x_1^3+x_2^3-\left(x_1+x_2\right)^2=2\)

\(\Leftrightarrow x_1^3+x_2^3-\left(2m\right)^2=2\Leftrightarrow x_1^3+x_2^3-4m^2=2\)(*)

Phân tích nốt : cái \(x_1^3+x_2^3\)tớ ko biết phân tích thế nào, lm chỉ sợ sai