Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a+b chia hết cho k;c+d chia hết cho k
=>(a+b)-(c+d) chia hết cho k
<=>d.(a+b)-b.(c+d) chia hết cho k
<=>ad+db-bc-bd chia hết cho k
<=>(ad-bd)+(db-bc) chia hết cho k
<=>0+(db-bc) chia hết cho k
Mà 0 chia hết cho k;0+(db-bc) chia hết cho k=>db-bc 0+(db-bc) chia hết cho k (đpcm)
19A=192010+19/192010+1=192010+1+18/192010+1=192010+1/192010+1+18/192010+1=1+18/192010
19B=192009+19/192009+1=192009+1+18/192009+1=192009+1/192009+1+18/192009+1=1+18/192009
Vậy A<B
Xin lỗi mình chịu câu trên
Ta có A=\(\frac{19^{2009}+1}{19^{2010}+1}\) Ta có:B=\(\frac{19^{2008}+1}{19^{2009}+1}\)
19B=\(\frac{19^{2009}+19}{19^{2009}+1}\)
19A=\(\frac{19^{2010}+19}{19^{2010}+1}\) 19B=\(\frac{19^{2009}+1+18}{19^{2009}+1}\)
19A=\(\frac{19^{2010}+1+18}{19^{2010}+1}\) 19B=\(1+\frac{18}{19^{2009}+1}\)
19A=\(1+\frac{18}{19^{2010}+1}\)
Vì \(\frac{18}{19^{2010}+1}< \frac{18}{19^{2009}+1}\)nên \(19A< 19B\)
\(\Leftrightarrow A< B\)
Vậy\(A< B\)
Sử dụng đồng dư
theo bài ra ta có :
(a+b) chia hết cho k => (a+b)d chia hết cho k => (a.d+b.d) chia hết cho k
(c+d) chia hết cho k => b(c+d) chia hết cho k => (b.c+b.d) chia hết cho k
suy ra: (ad+bd)-(bc+bd) chia hết cho k
=>(ad-bc) chia hết cho k