Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
Ta có
\(A=\frac{3n+4}{n-1}=3+\frac{7}{n-1}\)là số nguyên khi n-1 là ước của 7 hay
\(n-1\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-6,0,2,8\right\}\)
Để A có giá trị nguyên
<=> 3n + 4 ⋮ n - 1
=> ( 3n - 3 ) + 7 ⋮ n - 1
=> 3 . ( n - 1 ) + 7 ⋮ n - 1
vì 3.(n-1) + 7 chia hết cho n-1 và 3.(n-1) chia hết cho n-1 nên 7 chia hết cho n-1
=> n - 1 ∈ Ư(7) = { - 7 ; -1 ; 1 ; 7 }
Ta có bảng sau :
n-1 | 1 | -1 | -7 | 7 |
n | 2 | 0 | -6 | 8 |
mọi giá trị n đều thuộc z (chọn)
Vậy x ∈ { - 6 ; 0 ; 2 ; 8 }
a)ĐKXĐ:n \(\ne\)1
\(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=3+\frac{7}{n-1}\)
=>n-1 thuộc Ư(7)={1;-1;7;-7}
=>n ={2;0;8-6}
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
A= 3n+2/n-1 = 3n-3+5/n-1 = 3n-3/n-1 + 5/n-1 = 3 - 5/n-1
Vậy A là số nguyên khi 5 chia hết cho n-1 (nguyên trừ nguyên mới ra nguyên nhen)
=>n-1 thuộc Ư{5}={1;-1;5;-5}
=>n thuộc {2;0;6;-4}
Không chắc nhen
vì 3n +2/n-1 có giá trị là 1 số nguyên nên 3n+2 chia hết cho n-1. Ta có: 3n+2 chia hết cho n-1 3n-3+5 chia hết cho n-1 (3n-3)+5 chia hết cho n-1 3(n-1)+5 chia hết cho n-1 suy ra, 5 chia hết cho n-1(vì 3(n-1) chia hết cho n-1) suy ra, n-1 thuộc Ư(5)=(-1,-5,5,1) suy ra, n thuộc(0,-4,6,2) Vay n thuoc (0,-4,6,2)
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
:D
Do A có giá trị nguyên
\(\Rightarrow3n+2⋮n-1^{\left(1\right)}\)
Mà \(n-1⋮n-1\)
\(\Rightarrow3\left(n-1\right)⋮n-1^{\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)
\(\Rightarrow3n+2-3n+3⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;-5;5;1\right\}\)
Xét \(n-1=-1\Rightarrow n=-4\)
\(n-1=-5\Rightarrow n=0\)
\(n-1=5\Rightarrow n=6\)
\(n-1=1\Rightarrow n=2\)
Vậy ...
A = \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)
Để A có giá trị nguyên <=> n - 1 \(\in\)Ư(5) = {1;-1;5;-5}
Ta có: n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 5 => n = 6
n - 1 = -5 => n = -4
Vậy n = {2;0;6;-4}