K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
24 tháng 5 2023
Gọi S là giao của BM với d, N là giao của BP với HK
Xét ΔPAM và ΔOBM có
AP/MA=OB/MB
góc PAM=góc OBM
=>ΔPAM đồng dạng với ΔOBM
=>PA/PM=OB/OM=1
=>PA=PM
góc AMS=90 độ
=>góc PAM+góc PSM=90 độ=góc PMA+góc PMS
PM=PA
=>góc PSM=góc PMS
=>PS=PM
=>PA=PS
KH//AS
=>NK/PA=BN/BP=NH/PS
=>NK=NH
=>BP đi qua trung điểm của HK
a: Ta có: ΔOAC vuông tại O
=>\(OA^2+OC^2=AC^2\)
=>\(AC^2=R^2+R^2=2R^2\)
=>\(AC=R\sqrt{2}\)
b: Xét (O) có
\(\widehat{BKM}\) là góc có đỉnh ở trong đường tròn chắn hai cung BM và CA
=>\(\widehat{BKM}=\dfrac{1}{2}\left(sđ\stackrel\frown{BM}+sđ\stackrel\frown{CA}\right)\)
=>\(\widehat{IKM}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{BM}+sđ\stackrel\frown{BC}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{MC}\left(1\right)\)
Xét (O) có
\(\widehat{IMC}\) là góc tạo bởi tiếp tuyến MI và dây cung MC
Do đó: \(\widehat{IMK}=\dfrac{1}{2}\cdot sđ\stackrel\frown{MC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{IKM}=\widehat{IMK}\)
=>IM=IK
c: \(\widehat{IKM}=\dfrac{1}{2}\left(sđ\stackrel\frown{BM}+sđ\stackrel\frown{AC}\right)\)
\(=\dfrac{1}{2}\left(50^0+90^0\right)=70^0\)
ΔIMK cân tại I
=>\(\widehat{KIM}=180^0-2\cdot70^0=40^0\)