Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh được B A C ^ = 90 0 kết hợp B A D ^ = C A E ^ = 90 0 => ĐPCM
b, Chứng minh ∆BAD:∆EAC => AD.AE=AB.AC(đpcm)
c, Chứng minh tứ giác OIO’K là hình chữ nhật
Đường tròn ngoại tiếp ∆OKO’ chính là đường tròn ngoại tiếp hình chữ nhật ,có đường kính là IK mà IK ⊥ BC tại I
a: Kẻ tiếp tuyến chung AH của (O) và (O'). (H thuộc DE)
Xét (O) có
HA,HD là tiếp tuyến
nên HO là phân giác của góc DHA(1) và HD=HA
mà OD=OA
nên OH là trung trực của AD
=>OH vuông góc với AD tại K
Xét (O') có
HA,HE là tiếp tuyến
nên HA=HE và HO' là phân giác của góc AHE(2)
mà O'A=O'E
nên O'H là trung trực của AE
=>O'H vuông góc với AE tại G
Từ (1), (2) suy ra góc OHO'=1/2*180=90 độ
Xét tứ giác HKAG có
góc KHG=góc HKA=góc HGA=90 độ
nên HKAG là hình chữ nhật
=>góc DAE=90 độ
b: Xét (O) có
ΔBAD nội tiếp
BA là đường kính
=>ΔBAD vuông tại D
=>góc MDA=90 độ
Xét (O') có
ΔAEC nội tiếp
AC là đường kính
=>ΔAEC vuông tại E
=>góc MEA=90 độ
Xét tứ giác MDAE có
góc MDA=góc MEA=góc DAE=90 độ
nên MDAE là hình chữ nhật