K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

1.  Vì \(C,D\) nằm trên đường tròn đường kính \(AB\to BD\perp FA,AC\perp BF\to H\) là trực tâm tam giác \(ABF\to FH\perp AB.\)

2. Do tam giác \(ABF\)  có \(BD\) vừa là đường cao, vừa là đường phân giác, suy ra \(\Delta ABF\) cân ở \(B.\) Suy ra \(D\) là trung điểm \(FA.\)  Vì \(FH\parallel AE\to\frac{DH}{DE}=\frac{DF}{DA}=1\to AEFH\) là hình bình hành. Do hình bình hành này có hai đường chéo vuông góc với nhau nên \(AEFH\) là hình thoi. 

3.  Vì \(\angle ABC=60^{\circ}\to\Delta ABF\) là tam giác đều, suy ra  \(AF=AB=2R\). Mặt khác, \(BD=AB\cdot\cos30^{\circ}=2R\cdot\frac{\sqrt{3}}{2}=R\sqrt{3}.\) Mà \(H\) là trực tâm tam giác đều \(ABF\to HD=\frac{1}{3}BD=\frac{R\sqrt{3}}{3}\to EH=\frac{2R\sqrt{3}}{3}.\)

Vậy diện tích tứ giác \(AEFH\) bằng \(\frac{1}{2}\cdot EH\cdot AF=\frac{1}{2}\cdot\frac{2R\sqrt{3}}{3}\cdot2R=\frac{2R^2\sqrt{3}}{3}.\)

1 tháng 5 2023

△AMB nội tiếp đường tròn đường kính AB nên △AMB vuông tại M.

- Ta có: \(\widehat{CAB}+\widehat{DBA}=90^0+90^0=180^0\)

\(\Rightarrow\widehat{CAM}+\widehat{MAB}+\widehat{DBM}+\widehat{MBA}=180^0\)

\(\Rightarrow\left(\widehat{CAM}+\widehat{DBM}\right)+\left(\widehat{MAB}+\widehat{MBA}\right)=180^0\)

\(\Rightarrow\left(\widehat{CAM}+\widehat{DBM}\right)+90^0=180^0\) nên \(\widehat{CAM}+\widehat{DBM}=90^0\)

Tứ giác ANMC có: \(\widehat{NAC}+\widehat{NMC}=90^0+90^0=180^0\)

Nên tứ giác ANMC nội tiếp \(\Rightarrow\widehat{CAM}=\widehat{CNM}\)

Tứ giác BNMD có: \(\widehat{NBD}+\widehat{NMD}=90^0+90^0=180^0\)

\(\Rightarrow\)Tứ giác BNMD nội tiếp \(\Rightarrow\widehat{MBD}=\widehat{MND}\)

\(\Rightarrow\widehat{CNM}+\widehat{MND}=\widehat{CAM}+\widehat{MBD}=90^0\)

\(\Rightarrow\widehat{INK}=90^0\).

Tứ giác MINK có: \(\widehat{IMK}+\widehat{INK}=90^0+90^0=180^0\)

\(\Rightarrow\)Tứ giác MINK nội tiếp nên \(\widehat{MIK}=\widehat{MNK}\)

Lại có \(\widehat{MNK}=\widehat{MBD}\left(cmt\right)\) \(\Rightarrow\widehat{MIK}=\widehat{MBD}\)

Xét (O): \(\widehat{MBD}=\widehat{MAB}\left(=\dfrac{1}{2}sđ\stackrel\frown{MB}\right)\)

\(\Rightarrow\widehat{MIK}=\widehat{MAB}\) nên IK//AB

Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), kẻ các tia tiếp tuyến Ax và By với nửa đường tròn đó. Gọi M là điểm bất kì trên nửa đường tròn (O) ( M khác A, M khác B ) và C là điểm nằm giữa A và B sao cho AC<CB. Đường thẳng vuông góc với MC tại M cắt tia Ax tại D; đường thẳng vuông góc với...
Đọc tiếp

Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), kẻ các tia tiếp tuyến Ax và By với nửa đường tròn đó. Gọi M là điểm bất kì trên nửa đường tròn (O) ( M khác A, M khác B ) và C là điểm nằm giữa A và B sao cho AC<CB. Đường thẳng vuông góc với MC tại M cắt tia Ax tại D; đường thẳng vuông góc với CD tại C cắt tia By tại E. Gọi P là giao điểm giữa AM và CD, Q là giao điểm BM và CE. Cm

a) Các tứ giác ACMD và CQMP là tứ giác nội tiếp

b) PQ // AB

c) Ba điểm D,M,E thẳng hàng

d) Giả sử MC là phân giác của góc AMB. Cmr đường thẳng AB và đường tròn (O) cùng tiếp xúc với đường tròn ngoại tiếp tứ giác CQMP

0
Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), kẻ các tia tiếp tuyến Ax và By với nửa đường tròn đó. Gọi M là điểm bất kì trên nửa đường tròn (O) ( M khác A, M khác B ) và C là điểm nằm giữa A và B sao cho AC<CB. Đường thẳng vuông góc với MC tại M cắt tia Ax tại D; đường thẳng vuông góc với...
Đọc tiếp

Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), kẻ các tia tiếp tuyến Ax và By với nửa đường tròn đó. Gọi M là điểm bất kì trên nửa đường tròn (O) ( M khác A, M khác B ) và C là điểm nằm giữa A và B sao cho AC<CB. Đường thẳng vuông góc với MC tại M cắt tia Ax tại D; đường thẳng vuông góc với CD tại C cắt tia By tại E. Gọi P là giao điểm giữa AM và CD, Q là giao điểm BM và CE. Cm

a) Các tứ giác ACMD và CQMP là tứ giác nội tiếp

b) PQ // AB

c) Ba điểm D,M,E thẳng hàng

d) Giả sử MC là phân giác của góc AMB. Cmr đường thẳng AB và đường tròn (O) cùng tiếp xúc với đường tròn ngoại tiếp tứ giác CQMP

0