K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ACMO có 

\(\widehat{CAO}+\widehat{CMO}=180^0\)

Do đó: ACMO là tứ giác nội tiếp

b:

Xét tứ giác DMOB có 

\(\widehat{DMO}+\widehat{DBO}=180^0\)

Do đó: DMOB là tứ giác nội tiếp

Suy ra: \(\widehat{ODM}=\widehat{OBM}\)

mà \(\widehat{OBM}=\widehat{CAM}\left(=\dfrac{1}{2}sđ\stackrel\frown{AM}\right)\)

nên \(\widehat{CAM}=\widehat{ODM}\)

AH
Akai Haruma
Giáo viên
18 tháng 4 2018

Lời giải:

Bạn tự vẽ hình giúp mình nhé.

a) Vì $CA,CM$ là tiếp tuyến của $(O)$ nên \(CA\perp OA, CM\perp OM\) (theo tính chất tiếp tuyến)

\(\Rightarrow \widehat{CAO}=\widehat{CMO}=90^0\)

Tứ giác $ACMO$ có tổng hai góc đối \(\widehat{CAO}+\widehat{CMO}=90^0+90^0=180^0\) nên là tứ giác nội tiếp.

b)

Có: \(\widehat{CAM}=\widehat{ABM}=\widehat{OBM}\) (góc tạo bởi tia tiếp tuyến và dây cung AM và góc nội tiếp cùng chắn cung AM thì bằng nhau)

Hoàn toàn tt ta cũng chỉ ra được $BDMO$ nội tiếp

\(\Rightarrow \widehat{ODM}=\widehat{OBM}\)

Do đó: \(\widehat{CAM}=\widehat{ODM}\)

c)

Xét tam giác $POM$ và $PCA$ có:

\(\left\{\begin{matrix} \widehat{P}-\text{chung}\\ \widehat{PMO}=\widehat{PAC}=90^0\end{matrix}\right.\) \(\Rightarrow \triangle POM\sim \triangle PCA(g.g)\)

\(\Rightarrow \frac{PO}{PC}=\frac{PM}{PA}\Rightarrow PO.PA=PC.PM\)

Ta có đpcm.

17 tháng 3 2019

ae giúp tôi câu d nhá

8 tháng 6 2019

bn vô hoc 24h.vn hỏi nha 

~ Hok tốt ~
#JH

19 tháng 7 2018

a, Dễ thấy  A M B ^ = 90 0 hay E M F ^ = 90 0  tiếp tuyến CM,CA

=> OC ⊥ AM =>  O E M ^ = 90 0 Tương tự =>  O F M ^ = 90 0

Chứng minh được ∆CAO = ∆CMO =>  A O C ^ = M O C ^

=> OC là tia phân giác của A M O ^

Tương tự OD là tia phân giác của  B O M ^  suy ra OC ⊥ OD <=>  C O D ^

b, Do ∆AOM cân tại O nên OE là đường phân giác đồng thời là đường cao

=>  O E M ^ = 90 0  chứng minh tương tự  O F M ^ = 90 0

Vậy MEOF là hình chữ nhật

c, Gọi I là trung điểm CD thì I là tâm đường tròn đường kính CD và IO=IC=ID. Có ABDC là hình thang vuông tại A và B nên IO//AC//BD và IO vuông góc với AB. Do đó AB là tiếp tuyến của đường tròn đường kính CD.