\(\inℕ\). Chứng minh rằng :

a) ( n + 10 ) ( n + 15 ) chia hết cho 2 

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

tớ ko chắc nữa n là 1 số chẵn và 1 số lẽ

14 tháng 10 2018

a) vì n thuộc N, ta có:

TH1: n là số lẻ

=> n+15 là số chẵn => n+15 chia hết cho 2=> (n+10).(n+15) chia hết cho 2

TH2: n là số chẵn

=> n+10 là số chẵn=> n+10 chia hết cho 2=> (n+10).(n+15) chia hết cho 2

Vậy với mọi n thuộc N => (n+10).(n+15) chia hết cho 2

b) vì n thuộc N

=> n, n+1, n+2 là 3 số tự nhiên liên tiếp => một trong ba số chia hết cho 3=> n.(n+1).(n+2) chia hết cho 3

xét TH1: n là số lẻ

=> n+1 là số chẵn => n+1 chia hết cho 2=>n.(n+1).(n+2)  chia hết cho 2

xét TH2: n là số chẵn 

=> n+2 và n là số chẵn => n chia hết cho 2, n+2 chia hết cho 2=>n.(n+1).(n+2)  chia hết cho 2

vậy với mọi n thuộc N thì n.(n+1).(n+2)  chia hết cho 2,3

29 tháng 11 2017

Đề bài là tìm n chứ:

a) Ta có:

\(n+5⋮n+2\)

\(\Rightarrow\left(n+2\right)+3⋮n+2\)

\(\Rightarrow3⋮n+2\)

\(\Rightarrow n+2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-3\Rightarrow n=-5\\n+2=3\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{-3;-1;-5;1\right\}\)

b) Ta có:

\(2n+1⋮n-5\)

\(\Rightarrow\left(2n-10\right)+11⋮n-5\)

\(\Rightarrow2\left(n-5\right)+11⋮n-5\)

\(\Rightarrow11⋮n-5\)

\(\Rightarrow n-5\in U\left(11\right)=\left\{-1;1;-11;11\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-5=-1\Rightarrow n=4\\n-5=1\Rightarrow n=6\\n-5=-11\Rightarrow n=-6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)

Vậy \(n\in\left\{4;6;-6;16\right\}\)

c) Ta có:

\(n^2+3n-13⋮n+3\)

\(\Rightarrow n\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\)

\(\Rightarrow n+3\in U\left(13\right)=\left\{-1;1;-13;13\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+3=-1\Rightarrow n=-4\\n+3=1\Rightarrow n=-2\\n+3=-13\Rightarrow n=-16\\n+3=13\Rightarrow n=10\end{matrix}\right.\)

Vậy \(n\in\left\{-4;-2;-16;10\right\}\)

30 tháng 8 2020

a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)

=>2n+1 thuộc {1,3,7,21}

2n+113721
n01310

Vậy n thuộc{0,1,3,10}

30 tháng 8 2020

b, n+15 chia hết cho n-3 => n-3+18 chia hết n-3

=>18 chia hết n-3 =>n-3 thuộc Ư(18)

=>18 thuộc B(n-3)=>n-3 thuộc {1,2,3,6,9,18}

 Ta có bảng giá trị sau:

n-312369

18

n45691221

Vậy...

17 tháng 6 2017

a, Ta có:

\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)

Ta lại có:

\(9^n-2^n⋮9-2=7;2n.7⋮7\)

\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)

8 tháng 10 2016

mình biết cách làm

đó mai mình 

chỉ cho nhé vì

mình cũng làm bài

này nhiều rùi

16 tháng 10 2016

Bài này mik cũng làm nhiều rùi nè

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

27 tháng 9 2016

a. Xét n chẵn 

=> n + 10 chẵn

=> (n + 10) (n + 15) chẵn => chia hết cho 2

Xét n lẻ

=> n + 15 chẵn 

=> (n + 10) (n + 15) chẵn => chia hết cho 2

Vậy (n + 10) (n + 15) chia hết cho 2 với mọi n

b. n (n + 1) (n + 2)

=> n + n + 1 + n + 2 

=> 3n + 3 

Ta có : 3n chia hết cho 3 ; 3 chia hết cho 3

=> 3n + 3 chia hết cho 3

Ta có n (n + 1) là tích hai số liên tiếp chia hết cho 2

Ta có n (n + 2) tích hai số liên tiếp chia hết cho 2

Và n (n + 2) = n.n + n.2 = 2n . n2 có cơ số 2 nên chia hết cho 2.

c. n (n + 1) (2n + 1) = n (n + 1) (n + 2 + n - 1) = n (n + 1) (n + 2) (n - 1) (n + 1) n

Các số trên là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và chia hết cho 2

27 tháng 9 2016

ra đề dễ đi

4 tháng 8 2015

Mình chỉ biết làm ý a thôi, ý bc chắc cũng tương tự, 
bài cho n là số tự nhiên vậy n có thể là số chẵn hoặc là số lẻ, 
a, trong biểu thức (n+10)(n+15) ta xét hai trường hợp
+)trường hợp 1: n lẻ, ta có: (n+10) sẽ là số lẻ; (n+15) sẽ là số chẵn. (n+10)(n+15) là tích của một số lẻ với một số chẵn , vậy kết quả sẽ là số chẵn và chia hết cho 2
+)trường hợp 2: n chẵn, ta có: (n+10) sẽ là số chẵn;(n+15) sẽ là số lẻ.  (n+10)(n+15) là tích của một số chẵn và một số lẻ, vậy kết quả sẽ là số chẵn và chia hết cho 2

7 tháng 4 2016

a) Ta có n là số tự nhiên nên n chẵn hoặc n lẻ

nếu n chẵn thì n +10 chẵn nên n+ 10 chia hết cho 2. Do đó (n+10)(n+15) chia hết cho 2

nếu n lẻ thì n + 15 chẵn nên n+15 chia hết cho 2. Do đó (n+10)(n+15) chia hết cho 2

Vậy (n+10)(n+15) chia hết cho 2

b) c) tương tự