\(\sqrt{1+\frac{1}{1^2}+\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\) \(=\sqrt{\frac{n^2\left(n+1\right)^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\frac{\left[n\left(n+1\right)\right]^2+2n\left(n+1\right)+1}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left[n\left(n+1\right)+1\right]^2}{\left[n\left(n+1\right)\right]^2}}=\frac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Do đó: \(Q=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{n}-\frac{1}{n+1}+\frac{101}{n+1}\)

\(=n+1-\frac{1}{n+1}+\frac{101}{n+1}=n+1+\frac{100}{n+1}\ge2\sqrt{\left(n+1\right)\cdot\frac{100}{n+1}}=20\)

Dấu "=" \(\Leftrightarrow n+1=\frac{100}{n+1}\Leftrightarrow n=9\)

15 tháng 4 2020

dòng thứ 2 từ dưới đếm lên : chỗ này là sao vậy ạ? nếu là ruts gọc thì 1+1-1/2+1+1/2-1/3 đi đâu rồi ạ?

NV
16 tháng 4 2020

Nguyễn Hồng Nhung

Thay vào công thức:

\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=1+\frac{1}{1.2}\) ; \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2.3}\) ...

Cộng lại:

\(1+\frac{1}{1.2}+1+\frac{1}{2.3}+...+1+\frac{1}{n\left(n+1\right)}\)

Có n số 1 cộng với nhau ra n

CÒn lại đống \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\) thôi

16 tháng 4 2020

bạn giải thích cho mình chỗ dấu suy ra thứ 2 được không ạ, vì sao lại xuất hiện n+1/1.2 +......... vậy ạ?

17 tháng 8 2018

Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.

27 tháng 11 2020

Ta có :

\(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k}+\sqrt{k+1}}\)

\(=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\)

\(=2\left(\sqrt{k+1}-\sqrt{k}\right)\)

Vậy : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>2\left(\sqrt{2}-1\right)+2\left(\sqrt{3}-\sqrt{2}\right)+....+2\left(\sqrt{n+1}-\sqrt{n}\right)\)

\(=2\left(\sqrt{n+1}-1\right)\left(đpcm\right)\)

19 tháng 6 2015

a, bạn chỉ cần lập công thức tông quát :

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cái này bạn chỉ cần trục căn thức ở mẫu chưng minh xong áp dụng vào luôn là ra

a, kq : 4/5

b,\(1-\frac{1}{\sqrt{n+1}}\)

c,d chưa nghĩ ra