Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn chú ý ng ta noi ( la sô nguyen) thi duong nhien tử phai chia hêt cho mẫu;
m2 -n2 :het mn là phai rùi
=> n2 : het cho m thi bn tach tu thành 2 ps giàn uoc la biet liên
( em chi hoc lop6 nghe anh nhưng k bao gio sai)
Đặt \(\frac{m^2-n^2}{mn}=a\)
=>\(m^2-n^2=mn.a\)
Vì \(\frac{m^2-n^2}{mn}\)là số nguyên
=>a là số nguyên
mà \(m^2-n^2=mn.a\)
=>\(m^2-n^2\) chia hết cho mn
mà mn chia hết cho m
=>\(m^2-n^2\)chia hết cho m
Vì \(m^2\) chia hết cho m
=>\(n^2\)chia hết cho m
Chắc đề là như này : Tìm tất cả các số nguyên dương m,n sao cho \(m+n^2⋮m^2-n\) và \(m^2+n⋮n^2-m\)
Ko mất tính tổng quát giả sử \(n\ge m\) . Ta xét các TH sau :
+ TH1: \(n>m+1\Rightarrow n-1>m\)
\(\Rightarrow n\left(n-1\right)>m\left(m+1\right)\Rightarrow n^2-m>m^2+n\)
\(\Rightarrow m^2+n⋮̸n^2-m\)
+ TH2: \(n=m+1\) \(\Rightarrow m+\left(m+1\right)^2⋮m^2-\left(m+1\right)\)
\(\Rightarrow m^2-m-1+4m+2⋮m^2-m-1\) \(\Rightarrow4m+2⋮m^2-m-1\)
\(\Rightarrow4m+2\ge m^2-m-1\Rightarrow m^2-5m-3\le0\)
\(\Rightarrow\frac{5-\sqrt{37}}{2}\le m\le\frac{5+\sqrt{37}}{2}\) \(\Rightarrow m\in\left\{0;1;2;3;4;5\right\}\)
Thử từng TH chú ý n = m + 1
+ TH3: \(n=m\) ta có : \(m+n^2⋮m^2-n\Rightarrow n^2+n⋮n^2-n\Rightarrow2n⋮n^2-n\)
\(\Rightarrow2n\ge n^2-n\) ( do \(2n>0\) ) \(\Rightarrow n^2-3n\le0\Rightarrow0\le n\le3\)
Thử từng TH với đk m = n.
a, Vì a,b là các số nguyên lẻ không chia hết cho 3
=> \(\left\{{}\begin{matrix}a^2\equiv1\left(mod3\right)\\b^2\equiv1\left(mod3\right)\end{matrix}\right.\)\(\Rightarrow a^2-b^2⋮3\)
Tương tự với 8
b,\(x^4+x^2+x^2y^2+y^2-4x^2y=0\)
\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2+x^2y^2-2x^2y\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)^2+x^2\left(1+y^2-2y\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)^2+x^2\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=y\\x\left(y-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\)