Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:\(M=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)
\(=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
b: \(M=2\sqrt{\sqrt{15+\sqrt{6}}-4}\simeq0.088\)
ĐKXĐ: x > 4
a, Có \(A=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
\(\orbr{\begin{cases}=2\sqrt{x-4}\left(với\sqrt{x-4}\ge2\right)\\=4\left(với\sqrt{x-4}< 2\right)\end{cases}}\)
b, Xét \(A=2\sqrt{x-4}\)thì \(\sqrt{x-4}\ge2\)
\(\Leftrightarrow x-4\ge4\)
\(\Leftrightarrow x\ge8\)
Khi đó \(A=2\sqrt{x-4}\ge2\sqrt{8-4}=4\)
Nên \(A_{min}=4\Leftrightarrow x=8\)
c, Với \(x=\sqrt{15+\sqrt{6}}\)thì \(\sqrt{x-4}=\sqrt{\sqrt{15+\sqrt{6}}-4}< 2\)
Nên từ câu a => A = 4
a)\(M=\sqrt{x+\sqrt{x^2-4}}\sqrt{x-\sqrt{x^2-4}}\)
=\(\sqrt{\left(x+\sqrt{x^2-4}\right)\left(x-\sqrt{x^2-4}\right)}\)
=\(\sqrt{x^2-\left(\sqrt{x^2-4}\right)^2}\)
=\(\sqrt{x^2-\left(x^2-4\right)}\)
=\(\sqrt{x^2-x^2+4}\)
=\(\sqrt{4}=2\)
b) vì M=2 nên giá trị của M không phụ thuộc vào giá trị của biến nên với
\(x=4+\sqrt{5}\)
thì giá trị của M vẫn là 4
\(M\sqrt{x}=\sqrt{\left(x+2\right)+\left(x-2\right)+2\sqrt{\left(x-2\right)\left(x+2\right)}}+\sqrt{\left(x+2\right)+\left(x-2\right)-2\sqrt{\left(x-2\right)\left(x+2\right)}}\)
\(=\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{x+2}-\sqrt{x-2}\right)^2}\)
\(=\sqrt{x+2}+\sqrt{x-2}+\sqrt{x+2}-\sqrt{x-2}=2\sqrt{x+2}\)
\(\Rightarrow M=\sqrt{2}\sqrt{x+2}\)
a, Ta có :\(\sqrt{x-\sqrt{x^2-1}}.\sqrt{x+\sqrt{x^2-1}}\)
= \(\sqrt{\left(x-\sqrt{x^2-1}\right).\left(x+\sqrt{x^2-1}\right)}\)
= \(\sqrt{x^2-\left(\sqrt{x^2-1}\right)^2}=\sqrt{x^2-|x^2-1|}\)
= \(\sqrt{x^2-\left(x^2-1\right)}=\sqrt{x^2-x^2+1}=\sqrt{1}=1\) ( TM )
a/ Sai đề.
\(x+2\sqrt{2x-4}=\left(x-2\right)+2.\sqrt{2}.\sqrt{x-2}+2=\left(\sqrt{2}+\sqrt{x-2}\right)^2\)
b/ \(M=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{\left(\sqrt{2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{x-2}\right)^2}\)
\(=\sqrt{2}+\sqrt{x-2}+\left|\sqrt{2}-\sqrt{x-2}\right|\)
1. Nếu \(2\le x\le4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\)
2. Nếu \(x>4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)
a/ ĐKXĐ:...
\(E=\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{x-1}\right):\left(\frac{x-1}{\sqrt{x}}\right)\)
\(E=\left(\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{x-1}\right).\frac{\sqrt{x}}{x-1}\)
\(E=\frac{4x^2}{\left(x-1\right)^2}\)
Bn ơi! Kia là chia \(\sqrt{x}-\frac{1}{\sqrt{x}}\) hay nhân z? Bn xem lại đề bài nhé! Theo mk là nhân thì nó sẽ ra kết quả ngắn gọn hơn nhìu :D
Bài 1:
a/ ĐKXĐ: \(x\ge2;x\ne11\)
b/ \(P=\frac{\left(x-5\right)\left(\sqrt{x-2}+\sqrt{3}\right)}{x-2-3}=\sqrt{x-2}+\sqrt{3}\)
c/ \(\sqrt{x-2}\ge0\forall x\in R\Rightarrow P=\sqrt{x-2}+\sqrt{3}\ge\sqrt{3}\forall x\in R\)
"="\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
- a.\(A=\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
\(\sqrt{2}A=\sqrt{12+8\sqrt{2}}+\sqrt{12-8\sqrt{2}}\)
\(=\sqrt{\left(2\sqrt{2}+2\right)^2}+\sqrt{\left(2\sqrt{2}-2\right)^2}\)
\(=2\sqrt{2}+2+2\sqrt{2}-2=4\sqrt{2}\)
\(A=\frac{4\sqrt{2}}{\sqrt{2}}=4\)
Bài 1:
a) \(\sqrt{6+4\sqrt{2}+\sqrt{6+4\sqrt{2}}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}+\left|2-\sqrt{2}\right|\)
\(=2+\sqrt{2}+2-\sqrt{2}\)( Vì \(2>\sqrt{2}\))
\(=4\)
b) Hình như sai đầu bài
Bài 2
Ta có \(VP=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\left|\sqrt{3}-1\right|\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
\(=2=VT\)
a, \(P=\frac{x-4}{\sqrt{x}\left(\sqrt{x-2}\right)}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{x-2\sqrt{x}}\)
b. Với \(x=4+2\sqrt{3}\Rightarrow P=\frac{\sqrt{4+2\sqrt{3}}+2}{4+2\sqrt{3}-2\sqrt{4+2\sqrt{3}}}\)
\(=\frac{\sqrt{3}+1+2}{4+2\sqrt{3}-2\left(\sqrt{3}+1\right)}=\frac{3+\sqrt{3}}{2}\)
C. \(P>0\Rightarrow\frac{\sqrt{x}+2}{x-2\sqrt{x}}>0\Rightarrow x-2\sqrt{x}>0\Rightarrow x>4\)
\(M=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)
\(=\left[{}\begin{matrix}2\sqrt{x-4}\left(x\ge8\right)\\4\left(4\le x\le8\right)\end{matrix}\right.\)
\(x=\sqrt{15+\sqrt{6}}< \sqrt{15+10}=5< 8\)
\(\Rightarrow M=4\)