K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

Đáp án B

2 tháng 6 2017

Đáp án C

Ro3mwKUMYOe8.png

Từ giả thiết suy ra tứ diện A'ABC đều  cạnh a nên  thể tích 

V A ' A B C = a 3 2 12

Khi đó

V A B C . A ' B ' C ' = d A ' , A B C . S A B C = 3 V A ' A B C = a 3 2 4

9 tháng 5 2019

Đáp án C

17 tháng 10 2017

Gọi H là trọng tâm của tam giác ABD ⇒ A'H ⊥ (ABCD).

13 tháng 8 2016

http://baitaptoan.net/bai-tap-lang-tru/

2 tháng 4 2016

_ Thể tích khối lăng trụ : 

Gọi D là trung điểm của BC ta có : \(BC\perp AD\Rightarrow BC\perp A'D\Rightarrow\widehat{ADA'}=60^0\)

Ta cso \(AA'=AD.\tan\widehat{ADA'}=\frac{3a}{2};S_{ABC}=\frac{a^2\sqrt{3}}{4}\)

Do đó \(V_{ABC.A'B'C'=}S_{ABC}.AA'=\frac{3a^2\sqrt{3}}{8}\)

- Bán kính mặt cầu ngoại tiếp tứ diện GABC :

Ta có I là giao điểm của GH với đường trung trực của AG trong mặt phẳng (AGH)

Gọi E là trung điểm của AG, ta có :

\(R=GI=\frac{GE.GA}{GH}=\frac{GA^2}{2GH}\)

Ta có :

\(GH=\frac{AA'}{3}=\frac{a}{2};AH=\frac{a\sqrt{3}}{3};GA^2=GH^2+AH^2=\frac{7a^2}{12}\)

Do đó \(R=\frac{7a^2}{2.12}.\frac{2}{a}=\frac{7a}{12}\)

2 tháng 4 2016

A B C D G H A' B' C' A E G H I

27 tháng 8 2019

Chọn D.

Ta có:  nên BB' là hình chiếu của A'B trên (BCC'B')

Vậy góc giữa đường thẳng A'B và mặt phẳng (BCC'B') là góc giữa hai đường thẳng A'B và BB' và là góc  A ' B B ' ^

Lại có: