có AB = 6cm; AC = 7cm; BC = 9cm; AH là đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

6 7 9 A B C H

(hình ảnh mang tính chất minh họa thôi nhé)

Áp dụng hệ thức lượng giác, ta có:

\(AC^2=BC.HC\)

\(\Rightarrow HC=\frac{AC^2}{BC}=\frac{7^2}{9}\approx5,4\)

Ta có: \(HB+HC=BC\)

\(\Rightarrow HB=BC-HC=9-5,4=3,6\)

Áp dụng hệ thức lượng giác, ta có: 

\(AH^2=HB.HC\)

\(\Leftrightarrow AH^2=3,6.5,4=19,44\)

\(\Leftrightarrow AH=\sqrt{19,44}\approx4,4\)

Bài 1: 

BC=BH+CH=9+16=25(cm)

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

28 tháng 9 2021

28 tháng 9 2021

undefined

Bài 1: 

Xét ΔABC vuông tại A có 

\(\cos B=\dfrac{AB}{BC}\)

nên \(BC=3:\cos60^0=6\left(cm\right)\)

=>\(AC=3\sqrt{3}\left(cm\right)\)

22 tháng 9 2015

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

5 tháng 10 2018

a,Trong \(\Delta\) ABH có AHB=900 (BH \(\perp\) BC tại H -gt)

AH2 + BH2 =AB2 (định lý Pi-ta-go)

T/s:162 +252 =AB2

\(\Rightarrow\) AB2 =881

mà AB>0

\(\Rightarrow\) AB=\(\sqrt{881}\)\(\approx\) 29.68

Trong\(\Delta\) ABC có BAC=900 (gt), Đường cao AH (gt)

AH2= BH*CH (hệ thức lượng)

T/s: 162=25*CH

\(\Rightarrow\) CH=\(\dfrac{16^2}{25}\) = 10.24

Có:BH+HC=BC(H\(\in\) BC)

T/s: 25+10.24=BC

\(\Rightarrow\) BC=35.24

Trong \(\Delta\) ABC có:BAC=900 (GT)

AB2 +AC2 =BC2(Định lý Py-ta-go)

T/s:29.682+AC2\(\approx\)35.242

\(\Rightarrow\) AC2\(\approx\)35.242-29.682

\(\approx\)360.95

Mà AC>0

\(\Rightarrow\) AC\(\approx\) 19

21 tháng 6 2017

Bài 1:

Áp dụng bất đẳng thức AM-MG ta có:

\(\dfrac{a+b}{2}\ge\sqrt{ab};\dfrac{a+c}{2}\ge\sqrt{ac};\dfrac{b+c}{2}\ge\sqrt{bc}\)

\(\Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)

\(\Rightarrow\dfrac{\left(a+b+c\right).2}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)

\(\Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (đpcm)

Chúc bạn học tốt!!!

21 tháng 6 2017

AM-GM chứ