Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
BC=BH+CH=9+16=25(cm)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
Bài 1:
Xét ΔABC vuông tại A có
\(\cos B=\dfrac{AB}{BC}\)
nên \(BC=3:\cos60^0=6\left(cm\right)\)
=>\(AC=3\sqrt{3}\left(cm\right)\)
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
a,Trong \(\Delta\) ABH có AHB=900 (BH \(\perp\) BC tại H -gt)
AH2 + BH2 =AB2 (định lý Pi-ta-go)
T/s:162 +252 =AB2
\(\Rightarrow\) AB2 =881
mà AB>0
\(\Rightarrow\) AB=\(\sqrt{881}\)\(\approx\) 29.68
Trong\(\Delta\) ABC có BAC=900 (gt), Đường cao AH (gt)
AH2= BH*CH (hệ thức lượng)
T/s: 162=25*CH
\(\Rightarrow\) CH=\(\dfrac{16^2}{25}\) = 10.24
Có:BH+HC=BC(H\(\in\) BC)
T/s: 25+10.24=BC
\(\Rightarrow\) BC=35.24
Trong \(\Delta\) ABC có:BAC=900 (GT)
AB2 +AC2 =BC2(Định lý Py-ta-go)
T/s:29.682+AC2\(\approx\)35.242
\(\Rightarrow\) AC2\(\approx\)35.242-29.682
\(\approx\)360.95
Mà AC>0
\(\Rightarrow\) AC\(\approx\) 19
Bài 1:
Áp dụng bất đẳng thức AM-MG ta có:
\(\dfrac{a+b}{2}\ge\sqrt{ab};\dfrac{a+c}{2}\ge\sqrt{ac};\dfrac{b+c}{2}\ge\sqrt{bc}\)
\(\Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
\(\Rightarrow\dfrac{\left(a+b+c\right).2}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
\(\Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (đpcm)
Chúc bạn học tốt!!!
6 7 9 A B C H
(hình ảnh mang tính chất minh họa thôi nhé)
Áp dụng hệ thức lượng giác, ta có:
\(AC^2=BC.HC\)
\(\Rightarrow HC=\frac{AC^2}{BC}=\frac{7^2}{9}\approx5,4\)
Ta có: \(HB+HC=BC\)
\(\Rightarrow HB=BC-HC=9-5,4=3,6\)
Áp dụng hệ thức lượng giác, ta có:
\(AH^2=HB.HC\)
\(\Leftrightarrow AH^2=3,6.5,4=19,44\)
\(\Leftrightarrow AH=\sqrt{19,44}\approx4,4\)