Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Trong hình vuông ABCD dựng tam giác EMB đều.
MBA^=ABC^−CBE^−EBM^=90o−15o−60o=15oMBA^=ABC^−CBE^−EBM^=90o−15o−60o=15o
Dễ dàng c/m đc:
ΔΔ CEB=ΔΔ BMA (c.g.c)
\RightarrowBMA^=BEC^=150oBMA^=BEC^=150o
\RightarrowBMA^=EMA^=150oBMA^=EMA^=150o
\Rightarrow
ΔΔ EMA=ΔΔ BMA (c.g.c)
\Rightarrow AE=AB
Tương tự c/m đc DE=DC
\Rightarrow DE=AE(1)
Dễ dàng c/m đc DAE^=60o(2)DAE^=60o(2)
Từ (1) và (2) \Rightarrow Tam giác AED đều.
Bài giải
A B C D E F H O O'
Ta có \(\widehat{DAE}=90^0-60^0=30^0\)
\(AD=AE(=AB) \)
\(\Rightarrow \triangle DAE\)cân tại A
\(\widehat{EDA}=\frac{180^0-30^0}{2}=75^0
\)
Nên \(\widehat{CDE}=15^0\)
Tương tự \(\triangle BEC\) cân tại \(B\)
Dễ chứng minh \(\triangle DAF=\triangle DCF\) (c.g.c)
\(\Rightarrow \widehat{DFC}=\widehat{DFA}=180^0-45^0-30^0=105^0\)
Hạ \(FH \perp DC\)
Thì dễ có \(\triangle DHF\) vuông cân tại \(H\)
\(\Rightarrow \widehat{ DFH}=45^0\) do đó \(HD=HO\)
\(\Rightarrow \widehat{HFC}=60^0\)
Tam giác \(HFC\) vuông tại \(H\) có \(\widehat{HFC}=60^0\)
Giả sử \(O'\) \)là trung điểm của\( FC\) thì \(\triangle HO'F\)đều
\(\Rightarrow HO'=HF=DH\)
\(\widehat{HDO'}=\frac{180^0-(60^0+90^0)}{2}=15^0=\widehat{CDE}\)
Nên\( D, E, O'\)thẳng hàng \(\Rightarrow O\) trùng \(O' \)
Hay\(O\) là trung điểm của \(CF\) nên \(OC=OF\)
Bài giải
Ta có ˆDAE=900−600=300DAE^=900−600=300
AD=AE(=ABAD=AE(=AB)
⇒△DAE⇒△DAE cân tại AA
ˆEDA=1800−3002=750EDA^=1800−3002=750
Nên ˆCDE=150CDE^=150
Tương tự △BEC△BEC cân tại BB
Dễ chứng minh △DAF=△DCF△DAF=△DCF (c.g.c)
⇒ˆDFC=ˆDFA=1800−450−300=1050⇒DFC^=DFA^=1800−450−300=1050
Hạ FH⊥DCFH⊥DC
Thì dễ có △DHF△DHF vuông cân tại HH
⇒ˆDFH=450⇒DFH^=450 do đó HD=HOHD=HO
⇒ˆHFC=600⇒HFC^=600
Tam giác HFCHFC vuông tại HH có ˆHFC=600HFC^=600
Giả sử O′O′ là trung điểm của FCFC thì
△HO′F△HO′F đều
⇒HO′=HF=DH⇒HO′=HF=DH
ˆHDO′=1800−(600+900)2=150=ˆCDEHDO′^=1800−(600+900)2=150=CDE^
Nên D,E,O′D,E,O′ thẳng hàng
⇒O⇒O trùng O′O′
Hay OO là trung điểm của CFCF nên OC=OF
A B C D F E
vì tam giác ABE đều nên góc ABE = AEB = 600
suy ra goc EBC = 90 - 30 = 600
vì tam giác BFC đều nên goc FBC = FCB = 60o
Ta có tam giác EBF cân tại B (vì BE =BF ) và goc EBF = EBC + CBF = 60+30 = 90o
suy ra goc BEF = \(\frac{180-90}{2}\)=45o
ta có goc AEF = AEB + BEF = 60 + 45 = 105o
ta có tam giac AED cân tại A(vì AD = AE) và goc EAD = 30o nên goc AED = \(\frac{180-30}{2}\)= 75o
Ta có goc AED + goc AEF = 75 + 105 = 180o
suy ra D, E, F thẳng hàng