K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2014

A B C D F E

vì tam giác ABE đều nên góc ABE = AEB = 600

suy ra goc EBC = 90 - 30 = 600

vì tam giác BFC đều nên goc FBC = FCB = 60o

Ta có tam giác EBF cân tại B (vì BE =BF ) và goc EBF = EBC + CBF = 60+30 = 90o

suy ra goc BEF = \(\frac{180-90}{2}\)=45o

ta có goc AEF = AEB + BEF = 60 + 45 = 105o

ta có tam giac AED cân tại A(vì AD = AE) và goc EAD = 30o nên goc AED = \(\frac{180-30}{2}\)= 75o

Ta có goc AED + goc AEF = 75 + 105 = 180o

suy ra D, E, F thẳng hàng

10 tháng 10 2017

a, Trong hình vuông ABCD dựng tam giác EMB đều.
MBA^=ABC^−CBE^−EBM^=90o−15o−60o=15oMBA^=ABC^−CBE^−EBM^=90o−15o−60o=15o
Dễ dàng c/m đc:
ΔΔ CEB=ΔΔ BMA (c.g.c)
\RightarrowBMA^=BEC^=150oBMA^=BEC^=150o
\RightarrowBMA^=EMA^=150oBMA^=EMA^=150o
\Rightarrow

ΔΔ EMA=ΔΔ BMA (c.g.c)
\Rightarrow AE=AB
Tương tự c/m đc DE=DC
\Rightarrow DE=AE(1)
Dễ dàng c/m đc DAE^=60o(2)DAE^=60o(2)
Từ (1) và (2) \Rightarrow Tam giác AED đều.

20 tháng 12 2019

Đội sản xuất của 1 nông trường nhập về 567 bao ngô giống, mỗi bao có 30kg ngô. Người ta chia đều ngô giống đó cho 378 gia đình đẻ trồng ngô vào vụ mùa tới. Hỏi mỗi gia đình nhận được bao nhiêu ki - lô - gam ngô giống?

( help me ! )

3 tháng 9 2020

                                                              Bài giải

A B C D E F H O O'

Ta có \(\widehat{DAE}=90^0-60^0=30^0\)

\(AD=AE(=AB) \)

\(\Rightarrow \triangle DAE\)cân tại A
\(\widehat{EDA}=\frac{180^0-30^0}{2}=75^0 \)

Nên \(\widehat{CDE}=15^0\)

Tương tự \(\triangle BEC\) cân tại \(B\)

Dễ chứng minh \(\triangle DAF=\triangle DCF\) (c.g.c)

\(\Rightarrow \widehat{DFC}=\widehat{DFA}=180^0-45^0-30^0=105^0\)

Hạ \(FH \perp DC\)

Thì dễ có \(\triangle DHF\) vuông cân tại \(H\)

\(\Rightarrow \widehat{ DFH}=45^0\) do đó \(HD=HO\)

\(\Rightarrow \widehat{HFC}=60^0\)

Tam giác \(HFC\) vuông tại \(H\) có \(\widehat{HFC}=60^0\)

Giả sử \(O'\) \)là trung điểm của\( FC\) thì \(\triangle HO'F\)đều

\(\Rightarrow HO'=HF=DH\)

\(\widehat{HDO'}=\frac{180^0-(60^0+90^0)}{2}=15^0=\widehat{CDE}\)

Nên\( D, E, O'\)thẳng hàng \(\Rightarrow O\) trùng \(O' \)

Hay\(O\) là trung điểm của \(CF\) nên \(OC=OF\)

3 tháng 9 2020

                                                                              Bài giải

Ta có ˆDAE=900600=300DAE^=900−600=300

AD=AE(=ABAD=AE(=AB)

DAE⇒△DAE cân tại AA

ˆEDA=18003002=750EDA^=1800−3002=750

Nên ˆCDE=150CDE^=150

Tương tự BEC△BEC cân tại BB


Dễ chứng minh DAF=DCF△DAF=△DCF (c.g.c)

ˆDFC=ˆDFA=1800450300=1050⇒DFC^=DFA^=1800−450−300=1050

Hạ FHDCFH⊥DC

Thì dễ có DHF△DHF vuông cân tại HH

ˆDFH=450⇒DFH^=450 do đó HD=HOHD=HO

ˆHFC=600⇒HFC^=600

Tam giác HFCHFC vuông tại HH có ˆHFC=600HFC^=600

Giả sử OO′ là trung điểm của FCFC thì 

HOF△HO′F đều

HO=HF=DH⇒HO′=HF=DH

ˆHDO=1800(600+900)2=150=ˆCDEHDO′^=1800−(600+900)2=150=CDE^

Nên D,E,OD,E,O′ thẳng hàng

O⇒O trùng OO′

Hay OO là trung điểm của CFCF nên OC=OF

30 tháng 6 2017

Hình vuông