Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AH, BE cùng vuông góc d nên // nhau
AB//HE (AB//d đề cho)
=> ABEH là hình chữ nhật (2 cặp cạnh đối diện song song)
=> Diện tích ABEH = AB x BE (1)
Gọi M là giao điểm d và AD
gọi N là điểm thuộc d sao cho đối xứng với M qua I => IM = IN
Lại có IC = ID (I là trung điểm CD)
=> CNDM là hình bình hành => CN//MD hay CN//AD
Mà BC//AD (hình thang)
Nên B,C,N thẳng hàng
Chứng minh tam giác ICN = IDM (cạnh-góc-cạnh, 2 cặp cạnh bằng nhau chứng minh trên, góc đối đỉnh bằng nhau)
=> S hình thang ABCD = S hình bình hành ABNM (ABNM là hbh có 2 cặp cạnh //) (2)
BE vuông góc MN (BE vuông góc d) => S ABNM = AB x BE (3)
Từ (1) (2) (3)=> S ABCD = S ABEH
hờ hớ, tớ giải được nhưng dài lắm, hôm nào cô chữa t làm cho
sai đầu bài rồi nhé. Cái này là vô lý. xem lại đầu bài nhé
đề sai rồi, mk không chứng minh
xét theo hình vẽ thì có có thể bé hơn 3 đến 4 lần
A B C D O M N
c)\(\Delta AOB,\Delta BOC\)có chung đường cao hạ từ B nên\(\frac{S_1}{S_4}=\frac{OA}{OC}\left(1\right)\)
\(\Delta AOD,\Delta DOC\)có chung đường cao hạ từ D nên\(\frac{S_3}{S_2}=\frac{OA}{OC}\left(2\right)\)
Từ (1) và (2),ta có\(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\)
d) Áp dụng hệ quả định lí Ta-lét,ta có :
\(\Delta ADB\)có OM // AB nên\(\frac{OM}{AB}=\frac{OD}{DB}\left(3\right)\)
\(\Delta ABC\)có ON // AB nên\(\frac{ON}{AB}=\frac{OC}{AC}\left(4\right);\frac{ON}{AB}=\frac{NC}{BC}\left(5\right)\)
\(\Delta COD\)có AB // CD nên\(\frac{OD}{DB}=\frac{OC}{AC}\left(6\right)\)
\(\Delta BDC\)có ON // DC nên\(\frac{ON}{CD}=\frac{BN}{NC}\left(7\right)\)
Từ (3),(5),(6),ta có\(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\Rightarrow MN=2ON\Rightarrow\frac{1}{ON}=\frac{2}{MN}\)
Cộng (5) và (7),vế theo vế,ta có :\(\frac{ON}{AB}+\frac{ON}{CD}=\frac{BN}{BC}+\frac{NC}{BC}\Leftrightarrow ON.\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{ON}=\frac{2}{MN}\)
P/S : Bạn xem lại đề để có thể xác định E,F nhé