K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NN
0
12 tháng 9 2018
Ta có: ΔABD vuông tại A
=> AB^2 + AD^2 = BD^2
=> BD = 13 (ĐL pitago)
=> BD = BC =>Δ BDC cân tại B.
Kẻ đường cao BI
=> BI cũng là trung tuyến tam giác BDC
=> ID = IC.
Xét ΔABD vuông tại A và ΔBID vuông tại I.
=> ΔABD = ΔBID (cạnh huyền- góc nhọn)
=> BI = AD (2 góc tương ứng)
Xét ΔBID vuông tại I có :
BD^2 = BI^2 + ID^2 (ĐL pitago)
=> ID = IC = 13^2 - 12^2 = √25 = 5.
=> ID + IC = DC = 5.2 = 10.
CM
3 tháng 12 2018
Gợi ý: Kẻ AH ^ CD tại H, kẻ BK ^ CD tại K
Tính được SABCD = 180cm2
2 tháng 9 2021
Bài 1:
Xét ΔABC và ΔBAD có
AB chung
BC=AD
AC=BD
Do đó: ΔABC=ΔBAD
Suy ra: \(\widehat{BAC}=\widehat{ABD}\)
hay \(\widehat{EAB}=\widehat{EBA}\)
hay ΔEAB cân tại E
Kẻ đường cao AH, BE
Ta có : AB // CD
Mà AH $\perp$ CD
BE $\perp$ CD
$\implies$ AH, BE $\perp$ AB, CD
$\implies$ ABEH là hình chữ nhật
Xét $\triangle$ ADH vuông tại H và $\triangle$ BCE vuông tại E có :
AD = BC
$\hat{D} = \hat{C}$
Vậy $\triangle$ ADH = $\triangle$ BCE (ch-gn)
Lại có : $DH+CE = CD - HE = CD - AB = 14 - 4 = 10$
Mà $DH = CE$ ( $\triangle$ ADH = $\triangle$ BCE )
$\implies DH = CE = \dfrac{10}2 = 5$
Xét $\triangle$ BEC vuông tại E có :
$BE^2 = BC^2-CE^2=13^2-5^2=169-25=144 \\
\implies BE = 12$
Xét $\triangle$ BDE vuông tại E có :
$BD^2=BE^2+DE^2=BE^2+(DH+HE)^2=BE^2+(DH+AB)^2=12^2 +(5+4)^2=12^2+9^2=144+81=225$
$\implies$ BD = AC = 15