K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

A F B D E C 48 24 24 24

Giải

ABED là hình thang

SABED = \(\frac{1}{2}\)(48 + 24) . 24 = 864

AFED là hình thang. Gọi AF = x

SAFED = \(\frac{1}{2}\)(x + 24) . 24

= 12x + 288

Mặt khác SAFED = \(\frac{11}{24}\)SABED = \(\frac{864.11}{24}=396\)

Ta có 12x + 288 = 396 => x = 9

Chọn F trên cạnh AB sao cho AF = 9

1 tháng 2 2020

Gọi Q là trung điểm của AD. Lúc đó thì MNPQ là hình bình hành (dễ c/m)

MP là đường chéo của hình bình hành MNPQ nên \(S_{\Delta MNP}=\frac{1}{2}S_{MNPQ}\)(1)

Gọi E, F là giao điểm của AC với NP và MQ. Kẻ BH \(\perp\) AC, MI \(\perp\) AC .

Lúc đó: \(S_{MNEF}=MI.MN\)

\(=\frac{1}{2}BH.\frac{1}{2}AC\)(tính chất đường trung bình của tam giác)

\(=\frac{1}{2}\left(\frac{1}{2}.BH.AC\right)=\frac{1}{2}S_{\Delta ABC}\)

Chứng minh tương tự, ta được:

\(S_{QPEF}=\frac{1}{2}S_{\Delta ADC}\)

Từ đó suy ra \(S_{MNPQ}=\frac{1}{2}S_{ABCD}\)(2)

Từ (1) và (2) suy ra \(S_{\Delta MNP}=\frac{1}{4}S_{ABCD}\)(đpcm)

8 tháng 12 2017

sai đầu bài rồi nhé. Cái này là vô lý. xem lại đầu bài nhé

9 tháng 12 2017

đề sai rồi, mk không chứng minh

xét theo hình vẽ thì có có thể bé hơn 3 đến 4 lần

4 tháng 4 2018

a, chứng minh EFGH là hình bình hành do có EF//HG (cùng song2 với AC) và HE//GF(cùng song2 BD)

mà có EG=HF=> EFGH là hình thoi (*)

ta có BD//HE=> góc HEF vuông (**)

từ (*)(**) => EFGH là hình vuông ( hình thoi có 1 góc vuông )

4 tháng 4 2018

A B C D E F G H M

a) Dễ dàng chứng minh được \(\Delta AEH=\Delta BFE=\Delta CGF=\Delta DHG\)

\(\Rightarrow EH=EF=FG=HG\)

=>EFGH là hình thoi

\(\Delta AEH\)vuông cân tại A =>\(\widehat{AEH}=45^0\)

\(\Delta BEF\)vuông cân tại B=>\(\widehat{BEF}=45^0\)

=>\(\widehat{HEF}=90^0\)

=> EFGH  là hình vuông

b) Ta chứng minh được : \(\Delta EBC=\Delta FCD\left(cgv.cgv\right)\)

\(\Rightarrow\widehat{BCE}=\widehat{CDF}\)

\(\Rightarrow\widehat{BCE}+\widehat{MCD}=\widehat{CDF}+\widehat{MCD}\)

\(\Rightarrow90^0=\widehat{MCD}+\widehat{CDM}\)

\(\Rightarrow180^0-\widehat{MCD}-\widehat{CDM}=\widehat{DMC}\)

\(\Rightarrow\widehat{DMC}=90^0hayDF\perp CE\)

gọi N là giao điểm của AG và DF 

cm tương tự \(DF\perp CE\)ta được AG\(\perp\)DF

=>GN//CM mà G là trung điểm của DC =>N là trung điểm của DM

\(\Delta\)ADM có AN vừa là đường cao vừa là đường phân giác =>\(\Delta ADM\)cân tại A

c)ta cm \(\Delta DMC~\Delta DCF\left(g.g\right)\Rightarrow\frac{DC}{DF}=\frac{CM}{CF}\)

\(\Rightarrow\frac{S_{DMC}}{S_{DCF}}=\left(\frac{DC}{DF}\right)^2\Rightarrow S_{DMC}=\left(\frac{DC}{DF}\right)^2\cdot S_{DCF}\)

Mà \(S_{DCF}=\frac{1}{2}DF\cdot DC=\frac{1}{4}DC^2\)

Vậy \(S_{DMC}=\frac{DC^2}{DF^2}\cdot\frac{1}{4}DC^2\)

Trong tam giác DCF theo định lý py ta go có:

\(DF^2=CD^2+CF^2=CD^2+\left(\frac{1}{2}AB\right)^2=CD^2+\frac{1}{4}CD^2=\frac{5}{4}CD^2\)

 Do đó \(S_{DMC}=\frac{CD^2}{\frac{5}{4}CD^2}\cdot\frac{1}{4}CD^2=\frac{1}{5}CD^2=\frac{1}{5}a^2\)

23 tháng 2 2015

Bài 2 : a) Ta có : OM // AB =>  \(\frac{OM}{AB}=\frac{OD}{DB}\)( Hq talet) (1)

ON // AB => \(\frac{ON}{AB}=\frac{OC}{AC}\)(2)

AB // CD => \(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\)(3)

Từ (1), (2), (3) => OM/AB = ON/AB => OM = ON

b) Ta có : ON // CD => \(\frac{ON}{CD}=\frac{OB}{DB}\)(4)

Cộng từng vế (1) và (4) ta đc : \(\frac{OM}{AB}+\frac{ON}{CD}=\frac{OD}{DB}+\frac{OB}{DB}=\frac{OD+OB}{DB}=1\)

Suy ra : \(\frac{2OM}{AB}+\frac{2ON}{CD}=2\Rightarrow\frac{MN}{AB}+\frac{MN}{CD}=2\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)

c) Để mình tính đã nha

23 tháng 2 2015

Câu c bài 2 mình tính ra SABCD = 2008 + 2009 = 4017(đvdt) nhưng mà dài quá để giải sau nha