K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a) Vẽ MN, CP vuông góc với BD.
Cần chứng minh:
\(IM^2+IA^2=BC^2+\frac{CD^2}{4}=AD^2+DM^2=AM^2\)
ΔBAH = ΔDCP(g.c.g) ⇒ AH = CP
MN là đường trung bình của tam giác DCP ⇒ \(MN=\frac{CP}{2}=\frac{AH}{2}\)
Dễ chứng minh ΔBAH~ΔDMN(g.g) ⇒ \(DN=\frac{BH}{2}\)
Ta có:
\(IN=IH-HN=\frac{BH}{2}-\left(DN-DH\right)=\frac{BH}{2}-\frac{BH}{2}+DH=DH\)
Do đó: \(IM^2+IA^2=AH^2+IH^2+IN^2+MN^2\)
\(=AH^2+\frac{BH^2}{4}+DH^2+\frac{AH^2}{4}=BC^2+\frac{CD^2}{4}\)\(=AM^2\) (đpcm)
(Áp dụng định lý Pytago đảo)
b) Từ phần a suy ra tam giác AIM vuông tại I
Do đó dễ chứng minh \(\frac{IK^2}{IA^2}+\frac{IK^2}{IM^2}=\frac{IM^2}{AM^2}+\frac{IA^2}{IM^2}=\frac{IM^2}{IM^2}=1\)
Suy ra đpcm
tam giác BAH = tam giác DCP , chứng minh góc BAH = góc PCD kiểu j vậy bạn ?