K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2019

S D A B C H K O

\(\left\{{}\begin{matrix}\left(SBC\right)\perp\left(ABCD\right)\\\left(SBC\right)\cap\left(ABCD\right)=BC\\CD\perp BC\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SBC\right)\Rightarrow\alpha=\widehat{DSC}\)

Đặt cạnh đáy là \(x\Rightarrow SD=\frac{x}{sin\alpha}=\frac{x\sqrt{26}}{4}\)

\(\Rightarrow SC=\sqrt{SD^2-CD^2}=\frac{x\sqrt{10}}{4}\)

Gọi H là trung điểm BC \(\Rightarrow SH\perp\left(ABCD\right)\)

Từ H kẻ \(HK\perp AC\Rightarrow\widehat{SKH}=\beta\)

\(SH=\sqrt{SC^2-\left(\frac{BC}{2}\right)^2}=\frac{x\sqrt{6}}{4}\)

\(HK=\frac{1}{2}BO=\frac{1}{4}BD=\frac{x\sqrt{2}}{4}\)

\(\Rightarrow tan\beta=\frac{SH}{HK}=\sqrt{3}\Rightarrow\beta=60^0\)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Hỏi đáp Toán

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 4 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 4 trang 121 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

1 tháng 4 2017

a) () // (ABCD) => {A_{1}{B_{1}}^{}}^{} // AB => {B_{1}}^{} là trung điểm của SB. Chứng minh tương tự với các điểm còn lại

b) Áp dụng định lí Ta-lét trong không gian:
\(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}\).
Do \(A_1A_2=A_2A\) nên : \(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}=1\).
Nên \(B_1B_2=B_2B;C_1C_2=CC_2=D_1D_2=D_2D\).

c) Có hai hình chóp cụt: ABCD.{A_{1}{B_{1}{C_{1}{D_{1}; ABCD.{A_{2}{B_{2}{C_{2}{D_{2}}^{}}^{}}^{}}^{}}^{}}^{}}^{}}^{}