Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}BD\perp SA\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)
\(\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)
- Xác định góc \(\alpha\) giữa SC và mặt phẳng (SAB)
\(\left\{{}\begin{matrix}S\in\left(SAB\right)\\CB\perp\left(SAB\right)\end{matrix}\right.\) \(\Rightarrow\left[\widehat{SC,\left(SAB\right)}\right]=\widehat{CSB}=\alpha\)
- Tính góc \(\alpha\) :
Trong tam giác vuông \(SBC\), ta có :
\(\tan\alpha=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{3}}\Rightarrow\alpha=30^0\)
Câu 1:
\(CD//AB\Rightarrow\) góc giữa SB và CD bằng góc giữa SB và AB
Mà \(\widehat{SBA}\) là góc giữa SB và AB
\(tan\widehat{SBA}=\frac{SA}{AB}=\frac{\sqrt{3}AB}{AB}=\sqrt{3}\Rightarrow\widehat{SBA}=60^0\)
Câu 2:
\(SA\perp\left(ABCD\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABCD)
\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)
\(AC=AB\sqrt{2}=a\sqrt{2}\)
\(\Rightarrow tan\widehat{SCA}=\frac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)
chọn D nha bạn