K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ABM=góc MBC

góc MBC=góc AMB

=>góc ABM=góc AMB

=>ΔABM cân tại A

b: Xét ΔBAM và ΔDCN có

góc ABM=góc CDN

BA=DC

góc A=góc C

Do đó: ΔBAM=ΔDCN

=>AM=CN

AM+MD=AD

BN+NC=BC

mà AD=BC và AM=CN

nên MD=BN

Xét tứ giác MDNB có

MD//NB

MD=NB

Do đó: MDNB là hình bình hành

a: Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

31 tháng 10 2021

a: Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

4 tháng 3 2015

* Hướng dẫn câu b:

Gọi I là giao điểm của Gx và PQ. Kéo dài PQ cắt hai cạnh AD và BC theo thứ tự là E và F.

Góc MPQ = góc GEF (so le trong do MP // AD)

Góc MQP = góc GFE (so le trong do MQ // BC)

góc MPQ = góc MQP (tam giác MPQ cân do MP = MQ)

=> góc GEF = góc GEF -> tam giác GEF cân tại G

mà GI là phân giác của góc G -> GI vuông góc với EF

-> Gx vuông góc với PQ -> Gx // MN (MN vuông góc với PQ do hình thoi có 2 đường chéo vuông góc).

5 tháng 11 2017

Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

Ví dụ :

B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}

Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.

12 tháng 7 2018

ai tích mình mình tích lại cho

16 tháng 12 2016

ta có MD//BN ( AB//CD)

MD=BN(AD=BC,MD=AM,BN=NC)

=> BMDN là hình bình hành 

25 tháng 11 2022

a: Xét tứ giác BMDN có

BN//DM

BN=DM

Do đó: BMDN là hình bình hành

=>BM//DN

Xét ΔADF có

M là trung điểm của AD

ME//DF
Do đó: E là trung điểm của AF

=>AE=EF

Xét ΔCEB có

N là trung điểm của CB

NF//EB

DO đó: F là trung điểm của CE

=>AE=EF=FC

b: AE+EO=AO

CF+FO=CO

mà AO=CO; AE=CF

nên EO=FO

=>O là trung điểm của EF

BMDN là hình bình hành

nên BD cắt MN tại trung điểm của mỗi đường

=>O là trung điểm của MN

Xét tứ giác MENF có

O làtrung điểm chung của MN và FE

nên MENF là hình bình hành

a: góc ABM=góc CBM

=>góc ABM=góc AMB

=>ΔABM cân tại A

b: Xét ΔBAM và ΔDCN có

góc BAM=góc DCN

BA=DC

góc ABM=góc CDN

=>ΔBAM=ΔDCN

=>BM=DN và AM=CN

=>BN=DM

=>DMBN là hình bình hành