Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi O là giao của AC và BD
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AECG có
AE//CG
AE=CG
Do đó: AECG là hình bình hành
=>AG//CE và AG=CE
Xét tứ giác AHCF có
AH//CF
AH=CF
Do đó: AHCF là hình bình hành
=>AF//CH và AF=CH
Xét ΔANB có
E là trung điểm của AB
EM//AN
Do đó: M là trung điểm của BN
=>BM=MN
Xét ΔDMC có
G là trung điểm của DC
GN//MC
Do đó: N là trung điểm của DM
=>DN=MN=MB=1/3DB
DN=1/3DB
DO=1/2DB
Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)
Xét ΔADC có
DO là trung tuyến
DN=2/3DO
Do đó: N là trọng tâm
=>A,N,G thẳng hàng và C,N,H thẳng hàng
Xét ΔABC có
BO là trung tuyến
BM=2/3BO
Do đó: M là trọng tâm
=>A,M,F thẳng hàng và C,M,E thẳng hàng
Xét ΔEBM và ΔGDN có
EB=GD
\(\widehat{EBM}=\widehat{GDN}\)
BM=DN
Do đó: ΔEBM=ΔGDN
=>EM=GN
Xét tứ giác EMGN có
EM//GN
EM=GN
Do đó: EMGN là hình bình hành
b: Để EMGN là hình chữ nhật thì EG=NM
=>\(AD=\dfrac{BD}{3}\)
A B C D E F K
d) Kẻ AK vuông góc với BC
Ta có: \(S_{ABC}=S_{ABE}+S_{AEC}=\frac{1}{2}AK.BE+\frac{1}{2}AK.EC=AK.BE\)(vì BE = EC (gt)) (1)
\(S_{AECF}=\frac{1}{2}AK.\left(AF+CE\right)=\frac{1}{2}AK.2.EC=AK.EC=AK.BE\)(vì AECF là hình bình hành => AF = EC) (2)
Từ (1) và (2) => \(S_{ABC}=S_{AECF}\)
Lời giải:
Vì $ABCD$ là hình bình hành nên $AB\parallel CD$
$\Rightarrow AE\parallel CF(1)$
Vì $ABCD$ là hình bình hành nên $AB=CD$
$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AE=CF(2)$
Từ $(1); (2)$ xét tứ giác $AECF$ có 2 cạnh đối $AE, CF$ song song và bằng nhau nên $AECF$ là hình bình hành.