K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2022

loading...

a) Trong (O) có: KB,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KB=KM\left(1\right)\)

Trong (I) có: KC,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KC=KM\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow KB=KC\)

△BME nội tiếp đường tròn (O) đường kính BE.

⇒△BME vuông tại MM.

\(\Rightarrow\widehat{BME}=90^0\)

b) Ta có: K thuộc đường trung trực của BM (\(KB=KM\))

O thuộc đường trung trực của BM \(\left(OB=OM\right)\)

⇒OK là đường trung trực của BM mà OK cắt BM tại N.

⇒N là trung điểm BM.

- Ta có: K thuộc đường trung trực của CM (\(KC=KM\))

I thuộc đường trung trực của CM \(\left(IC=IM\right)\)

⇒IK là đường trung trực của CM mà IK cắt CM tại P.

⇒P là trung điểm IK và \(CM\perp IK\) tại P.

Xét △BCM có: N là trung điểm BM, P là trung điểm CM.

⇒NP là đường trung bình của △BCM.

⇒NP//CM.

c) *Hạ \(IH\perp OB\) tại H.

Xét tứ giác BCIH có: \(\widehat{HBC}=\widehat{BCI}=\widehat{BHI}=90^0\)

⇒BCIH là hình chữ nhật.

\(\Rightarrow BC=IH;IC=BH=r\)

Xét △ICK vuông tại C có IP là đường cao:

\(\Rightarrow IK.IP=IC^2=r^2\)

Xét △OHI vuông tại H có:

\(HI^2+OH^2=OI^2\)

\(\Rightarrow HI=\sqrt{OI^2-OH^2}=\sqrt{\left(r+R\right)^2-\left(r-R\right)^2}=\sqrt{4Rr}=2\sqrt{Rr}\)

Mà \(BC=HI\Rightarrow BC=2\sqrt{Rr}\left(1'\right)\)

Ta có: \(2\sqrt{IM.IO-IK.IP}=2\sqrt{r\left(r+R\right)-r^2}=2\sqrt{Rr}\left(2'\right)\)

\(\left(1'\right),\left(2'\right)\Rightarrow BC=2\sqrt{IM.IO-IK.IP}\)

 

26 tháng 5 2019

bài này dễ mà

nhưng h tớ bận òi

tối hay khi nào rảnh giải cho

10 tháng 6 2015

vẽ hình rồi mình làm cho

1: Sửa đề: góc BAC=90 độ

Xét (O) có

IB,IA là các tiếp tuyến

Do đó: IB=IA

Xét (O') có

IA,IC là các tiếp tuyến

Do đó: IA=IC

Ta có: IB=IA

IA=IC

Do đó: IB=IC

=>I là trung điểm của BC

Xét ΔABC có

AI là đường trung tuyến

\(AI=\dfrac{BC}{2}\)

Do đó: ΔABC vuông tại A

=>\(\widehat{BAC}=90^0\)

2: Ta có: ΔACB vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

Xét tứ giác OBIA có \(\widehat{OBI}+\widehat{OAI}=90^0+90^0=180^0\)

nên OBIA là tứ giác nội tiếp

=>\(\widehat{OBA}=\widehat{OIA}\)

Xét tứ giác O'AIC có \(\widehat{O'AI}+\widehat{O'CI}=180^0\)

nên O'AIC là tứ giác nội tiếp

=>\(\widehat{O'IA}=\widehat{O'CA}\)

Ta có: \(\widehat{OBI}+\widehat{O'CI}=180^0\)

=>\(\widehat{OBA}+\widehat{CBA}+\widehat{BCA}+\widehat{O'CA}=180^0\)

=>\(\widehat{OBA}+\widehat{O'CA}=180^0-90^0=90^0\)

=>\(\widehat{OIA}+\widehat{O'IA}=90^0\)

=>\(\widehat{OIO'}=90^0\)