Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Ta có: xy//x'y' nên xAB ^ = ABy' (hai góc so le trong).
AA' là tia phân giác của xAB nên A1 = A2 = 1/2 xAB
BB' là tia phân giác của ABy' nên B1 = B2 = 1/2 ABy'
Từ trên ta có A2 = B1
Mà hai góc ở vị trí so le trong, nên
=> AA' // BB/ (có 2 góc so le trong bằng nhau)
b, xy//x'y' nên A1 = AA'B (2 góc so le trong)
AA'//BB' nên A1 = AB'B(2 góc đồng vị)
Vậy AA'B = AB'B
xx'yy'AB1212A'B'
a) x y / / x' y'xy//x′y′ nên \widehat{x A B}=\widehat{A B y'}xAB=ABy′ (hai góc so le trong). (1)
AA'AA′ là tia phân giác của \widehat{xAB}xAB nên: \widehat{A_1}=\widehat{A_2}=\dfrac{1}{2} \widehat{xAB}A1=A2=21xAB. (2)
BB'BB′ là tia phân giác của \widehat{ABy'}ABy′ nên: \widehat{B_1}=\widehat{B_2}=\dfrac{1}{2} \widehat{ABy'}B1=

x x' y' y A B t t'
a) Vì \(\widehat{xAB}=\widehat{ABy}\)và hai góc này là 2 góc so le trong nên xx' // yy'.(đpcm)
b) Vì \(\widehat{xAB}=\widehat{ABy}\)nên \(\widehat{ABt}=\widehat{ABt'}\). Mà hai góc này là hai góc so le trong nên At // Bt'.(đpcm)
a/ xx'// yy'
Ta co: \(xAB\)=ABy'(gt)
Ma hai goc nay o vi tri so le trong
Vay xx'//yy'
b/ At//Bt'
Ta co :A1=xAB:2( vi At la phan giac xAB)
va B1=ABy':2( vi Bt' la phan giac ABy'
a) xyxy // x' y'x′y′ nên \widehat{xAB}=\widehat{ABy'}xAB=ABy′ (hai góc so le trong). (1)
{AA}'AA′ là tia phân giác của \widehat{xAB}xAB nên: \widehat{{A}_{1}}=\widehat{{A}_{2}}=\dfrac{1}{2} \widehat{{xAB}}A1=A2=21xAB (2)
{BB}'BB′ là tia phân giác của \widehat{{ABy}'}ABy′ nên: \widehat{B_{1}}=\widehat{B_{2}}=\dfrac{1}{2} \widehat{A B y'}B1
a) xyxy // x' y'x′y′ nên \widehat{xAB}=\widehat{ABy'}xAB=ABy′ (hai góc so le trong). (1)
{AA}'AA′ là tia phân giác của \widehat{xAB}xAB nên: \widehat{{A}_{1}}=\widehat{{A}_{2}}=\dfrac{1}{2} \widehat{{xAB}}A1=A2=21xAB (2)
{BB}'BB′ là tia phân giác của \widehat{{ABy}'}ABy′ nên: \widehat{B_{1}}=\widehat{B_{2}}=\dfrac{1}{2} \widehat{A B y'}B1