\(ax^2\) + bx + 5

tìm các hệ số a và b của đa thức H (x), biết H (-1) =...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

H(1)=a+b+5=9 <=> a+b=4 (1)

H(-1)=a-b+5=5 <=> a=b (2)

Thay vào (1) => a=b=4:2=2

Hàm số H(x)=2x2+2x+5

ví sao a=b bn ?

4 tháng 4 2020

1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0

Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)

\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)

2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)

g(x) có bậc 1 => a-1=0 => a=1. Khi đó

\(g\left(x\right)=2x+b\)lại có g(2)=1

\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)

3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)

h(x) có bậc 2 => 5-a=0 => a=5

Khi đó h(x)=-7x2+8x-b

h(-1)=3 => -7(-1)2+8.(-1)+b=3

<=> -7-8+b=3 => b=18

4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1

r(x) bậc 2 => a+4=0 => a=-4

r(2)=5 => (-4).22+b.2-1=5

<=> -16+2b-1=5

<=> 2b=22 => b=11

31 tháng 5 2019

Ta có:+)  H(2) = 2.22 + a.2 + b = 5

=>  8 + 2a + b = 5

=> 2a + b = -3 (1)

+) H(1) = 2.12 + a.1 + b = -1

=> 2 + a + b = -1

=> a + b = -3 (2)

Từ (1) và (2) trừ vế cho vế :

(2a + b) - (a + b) = -3 - (-3)

=> a = 0

Thay a = 0 vào (2) ta được :

0 + b = -3 => b = -3

Vậy ...

\(H\left(2\right)=5\Rightarrow2.2^2+a.2+b=8+2a+b=5\)

\(\Rightarrow2a+b=-3\)

\(H\left(1\right)=-1\Rightarrow2.1^2+a+b=2+a+b=-1\)

\(\Rightarrow a+b=-3\)

\(\Rightarrow2a+b-\left(a+b\right)=a=-3-\left(-3\right)=0\)

\(\Rightarrow b=-3\)

Vậy a = 0;  b = -3

14 tháng 8 2016

1) Ta có : P(-1) = -a+b = 5 ; P(2) = 2a+b = -1

Suy ra hệ : \(\begin{cases}-a+b=5\\2a+b=-1\end{cases}\) \(\Leftrightarrow\begin{cases}a=-2\\b=3\end{cases}\)

2) Sao Q(-1) = 0 và Q(-1) = 10 ?

14 tháng 8 2016

3)

a) F(x) = 5x-7 = 0 => x = 7/5

G(x) = 3x+1 = 0 => x = -1/3

b) H(x) = F(x) - G(x) = (5x-7)-(3x+1) = 2x-8

=> H(x)=0 <=> 2x-8=0 <=> x = 4

c) F(x) = G(x) <=> 5x-7 = 3x+1 <=> 2x=8 <=> x = 4

 

Câu 3:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)

=>a=-3; b=-9