K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

a) x4-12x3+12x-9=(x4-3x3)+(3x3-9x2)-(3x2-9x)+(3x-9)=x3(x-3)+3x2(x-3)-3x(x-3)+3(x-3)

=(x-3)(x3+3x2-3x+3)

b)P(x)=o=>x-3=0 và x3=3x2-3x+3=0

                 =>x=3 và x=rỗng

=>x=3

2 tháng 11 2016

có 4 nghiệm ,đó là x=0;2;2-(căn 2);2+(căn 2)

5 tháng 8 2016

\(pt\Leftrightarrow\left(x^3+2\sqrt{2}\right)+2x^2+2\sqrt{2}x=0\)

\(\Leftrightarrow\left(x+\sqrt{2}\right)\left(x^2-\sqrt{2}x+2\right)+2x\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x+\sqrt{2}\right)\left[x^2+\left(2-\sqrt{2}\right)x+2\right]=0\)

\(\Leftrightarrow x=-\sqrt{2}\)

5 tháng 8 2016

Điều kiện  \(x\ge\frac{-1}{2}\)

Ta có : \(\sqrt{2x+1}+x^2-3x+1=0\)

\(\Leftrightarrow2\sqrt{2x+1}+2x^2-6x+2=0\)

\(\Leftrightarrow-\left(2x+1\right)+2\sqrt{2x+1}-1+2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2\left(x-1\right)^2-\left(\sqrt{2x+1}-1\right)^2=0\)

\(\Leftrightarrow\left[\sqrt{2}\left(x-1\right)-\sqrt{2x+1}+1\right].\left[\sqrt{2}\left(x-1\right)+\sqrt{2x+1}-1\right]=0\)

Tới đây bạn tự làm nhé!

7 tháng 8 2016

ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\sqrt{2x+1}+x^2-3x+1=0\)

\(\Rightarrow\sqrt{2x+1}=-x^2+3x-1\)

\(\Rightarrow2x+1=x^4-6x^3+11x^2-6x+1\)

\(\Rightarrow x^4-6x^3+11x^2-8x=0\)

\(\Rightarrow x\left(x^3-6x^2+11x-8\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^3-6x^2+11x-8=0\left(1\right)\end{cases}}\)

(1) => bấm máy ta nhận đc 1 nghiệm như mà lẻ quá

                                       Vậy có 2 nghiệm

7 tháng 8 2016

\(\sqrt{2x+1}=t\ge0\)\(\Rightarrow x=\frac{t^2-1}{2}\)

thay vài phương trình đã cho và phân tích nhân tử, ta được:

\(pt\rightarrow\left(t+1\right)\left(t^3-t^2-7t+11\right)=0\)

\(\Leftrightarrow t^3-t^2-7t+11=0\text{ (1)}\)\(do\text{ }t+1>0\)

Bấm máy tính thấy phương trình này chỉ có 1 nghiệm âm, do đó ta chứng minh phương trình này ko có nghiệm dương

\(\left(1\right)\Leftrightarrow t\left(t^2-4t+4\right)+3t^2-11t+11=0\)

\(\Leftrightarrow t\left(t-2\right)^2+3\left(t-\frac{11}{6}\right)^2+\frac{11}{12}=0\)

Thấy ngay phương trình này có VT > 0 nên vô nghiệm.

Vậy phương trình đã cho VÔ NGHIỆM.

14 tháng 11 2017

a, f(x)= (x^5-x^4)-(4x^4-4x^3)+(5x^3-5x^2)-(4x^2-4x)+(4x-4)

         =x^4(x-1)-4x^3(x-1)+5x^2(x-1)-4x(x-1)+4(x-1)

        =(x^4-4x^3+5x^2-4x+4)(x-1)

       =[(x^4-2x^3)-(2x^3-4x^2)+(x^2-2x)-(2x-4)](x-1)

       =(x^3-2x^2+x-2)(x-2)(x-1)

      =(x^2+1)(x-2)^2(x-1)

5 tháng 8 2016

\(y>x>0\)\(\Rightarrow7=-2x+3y>-2x+3x=x\)

\(0< x< 7\Rightarrow x\in\left\{1;2;3;4;5;6\right\}\)

\(y=\frac{7+2x}{3}\)

Thay x vào y xem giá trị nào làm y nguyên thì nhận