K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=3+3^2+3^3+3^4+.....+3^{100}\)

\(\Leftrightarrow C=\left(3+3^2+3^3+3^4\right)+........+\left(3^{97}+3^{98}+^{99}+3^{100}\right)\)

\(\Leftrightarrow C=3\left(1+3+3^2+3^3\right)+......+3^{97}+\left(1+3+3^2+3^3\right)\)

\(\Leftrightarrow C=3.40+.....+3^{97}.40\)

\(\Leftrightarrow C=40.\left(3+...+3^{97}\right)\)

\(\Rightarrow C⋮40\left(dpcm\right)\)

_Vi hạ_

11 tháng 7 2019

\(C=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8...++3^{97}+3^{98}+3^{99}+3^{100}\)

\(C=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(C=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)

\(C=\left(1+3+3^2+3^3\right)\left(3+3^5+...+3^{96}\right)\)

\(C=40.\left(3+3^5+...+3^{100}\right)⋮40\)

Vậy \(C⋮40\)

3 tháng 2 2016

Ta có:3+32+33+34+...........+3100

=(3+32+33+34)+............+(397+398+399+3100)

=(3+3.3+3.32+3.33)+..........+(397+397.3+397.32+397.33)

=3.(1+3+32+33)+............+397.(1+3+32+33)

=3.40+..........+397.40

=(3+35+.............+397).40 chia hết cho 40(điều phải chứng minh)

3 tháng 2 2016

C= ( 3+32+33+34) + ( 35+ 36 + 37+38) +....+ ( 397 + 398 + 399 + 3100)

C= 3. (1 + 3 + 32+ 33)+35.( 1+3+32+33) +.....+ 397.(1+3+32+33)

C= 3.40+35.40+.....+ 397.40= 40( 3+35+....+ 397)

bạn xem lại hộ mik nha! mik chưa chắc lắm^^

8 tháng 9 2016

\(S=3+3^2+3^3+...+3^{100}\)

\(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(S=40.3+...+3^{96}\left(3+3^2+3^3+3^4\right)\)

\(S=40.3+...+3^{96}.40.3\)

\(S=40.3.\left(3^4+...+3^{96}\right)\)chia hết 40

9 tháng 9 2016

Ta có: S = 3 + 3+ 3+ ...... + 3100

=> 3S = 3+ 3+ 33 +...... + 3101

=> 3S - S = 3101 - 3

=> 2S = 3101 - 3

=> S = \(\frac{3^{101}-3}{2}\)

Ta có:

C = 3 + 32 + 33 + 34 + ......... + 3100

C = ( 3 + 32 + 33 + 34 ) + ........... + ( 397 + 398 + 399 + 3100 )

C = ( 3 + 3 . 3 + 3 . 32 + 3 . 33 ) + ........... + ( 397 + 397 + 3 + 397 + 32 + 397 . 33 )

C = 3 . ( 1 + 3 + 32 + 33 ) + .............. + 397 . ( 1 + 3 + 32 + 33 )

C = 3 . 40 + ................ + 397 . 40

C = ( 3 + 35 + ,,,,,,,,,,,,,, + 397 ) . 40 chia hết cho 40 ( ĐPCM )

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)

28 tháng 7 2017

2+22+23+...+2100 = (2+22) + 22(2+22) + ... + 298(2+22) = 6 + 22.6 + ... + 298.6 = 6( 1 + 22 + ... + 298)

Vì 6 chia hết cho 3 nên tổng trên chia hết cho 3.

2+22+23+...+230 = (2+22+23) + 23(2+22+23) + ... + 227(2+22+23) = 14 + 23.14 + ... + 227.14 = 14( 1 + 23 + ... + 227)

Vì 14 chia hết cho 14 nên tổng trên chia hết cho 14.

1 + 3 + 32 + ... + 350 = 3+ 3 + 32 + ... + 350 = (30+31+32) + 33(30+31+32) + ... + 348(30+31+32) = 13 + 33.13 + ... + 348.13 = 13( 1 + 33 + ... + 348)

Vì 13 chia hết cho 13 nên tổng trên chia hết cho 13.

Nhớ cho mình nha!!!!!!