Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân 0 vào 2 vế ta có:
5x0=7x0
0=0
Vậy 5=7 điều phải chứng minh
voi cach c/m cua bn thi DAI SO cua Toan loan het ak
VD:4^2=-4^2 chang han 0=-2=-99...=99...
~ ~ ~ ~ ~
Tam giác HAB có HD là đường cao
\(\Rightarrow AH^2=AD\times AB\left(htl\right)\left(1\right)\)
Tam giác HAC có HE là đường cao
\(\Rightarrow AH^2=AE\times AC\left(htl\right)\left(2\right)\)
(1) và (2) => đpcm
~ ~ ~ ~ ~
HDA = DAE = AEH = 900
=> ADHE là hcn
=> EDH = AHD và HED = EHA
- - -
Tam giác DBH vuông tại D có DM là trung tuyến (M là trung điểm của BH)
=> DM = MH
=> Tam giác MDH cân tại M
=> MDH = MHD
Ta có: MDE = MDH + HDE = MHD + DHA = AHB = 900
=> MD _I_ DE
=> DE là tiếp tuyến của đường tròn (M ; MD) (3)
- - -
Tam giác ECH vuông tại E có EN là trung tuyến (N là trung điểm của CH)
=> EN = NH
=> Tam giác NEH cân tại N
=> NEH = NHE
Ta có: NED = NEH + HED = NHE + EHA = AHC = 900
=> NE _I_ DE
=> DE là tiếp tuyến của đường tròn (N ; NE) (4)
(3) và (4) => đpcm
~ ~ ~ ~ ~
Tam giác ABC vuông tại A có AH là đường cao:
(+) BC2 = AB2 + AC2 (ptg)
=> BC = 10 (cm)
(+) AB2 = BH . BC (htl)
=> BH = 3,6 (cm)
(+) AC2 = HC . BC (htl)
=> HC = 6,4 (cm)
\(DM=\dfrac{BH}{2}=1,8\left(cm\right)\)
\(EN=\dfrac{HC}{2}=3,2\left(cm\right)\)
MD _I_ DE và NE _I_ ED
=> MD // NE
=> MDEN là hình thang
Q là trung điểm của DE (ADHE là hcn)
P là trung điểm của MN (gt)
=> PQ là đtb của hình thang MDEN
\(\Rightarrow PQ=\dfrac{\left(DM+EN\right)}{2}=2,5\left(cm\right)\)
~ ~ ~ ~ ~
Bài 4:
a)
\(M=x+\sqrt{2-x}=-\left(2-x\right)+\sqrt{2-x}+2\)
Đặt \(\sqrt{2-x}=m\left(m\ge0\right)\)
\(\Rightarrow M=-m^2+m+2\)
\(=-\left(m^2-m+\dfrac{1}{4}\right)+\dfrac{1}{4}+2\)
\(=\dfrac{9}{4}-\left(m-\dfrac{1}{2}\right)^2\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(m=\dfrac{1}{2}\Leftrightarrow\sqrt{2-x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{7}{4}\)
b)
\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)
\(\Leftrightarrow5x^2+24x+9y^2-48y-12xy+80=0\)
\(\Leftrightarrow\left(4x^2+9y^2+64-12xy-48y+32x\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{16}{3}\end{matrix}\right.\) (loại)
Vậy . . .
Bài 2:
a)
\(M=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
\(=\dfrac{x^5-5x^3+4x}{30}\)
\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\dfrac{x\left(x^2-4\right)\left(x^2-1\right)}{30}\)
\(=\dfrac{x\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}{30}\)
Suy ra nếu x nguyên thì M cũng nguyên ^.^
Bài 3:
a) Chứng minh \(VP\ge VT\) dùng Cauchy Shwarz dạng Engel.
b) Xét \(M=2a^2+2b^2+2\)
\(=\left(a^2+1\right)+\left(b^2+1\right)+\left(a^2+b^2\right)\)
\(\ge2a+2b+2ab\) (áp dụng bđt AM - GM)
\(\Rightarrow a^2+b^2+1\ge a+b+ab\left(\text{đ}pcm\right)\)
Xét ΔAEB có
O là trung điểm của AB
H là trung điểm của AE
Do đó: OH là đường trung bình của ΔAEB
Suy ra: OH//BE