Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho đường tròn tâm O đường kính AB. Trên tiếp tuyến của đường tròn (O) tại A lấy điểm M (M khác A). Từ M vẽ tiếp tuyến thứ hai MC với (O) (C là tiếp điểm). Kẻ CH vuông góc với AB (H thuộc AB), MB cắt (O) tại điểm thứ hai là K cắt CH tại N. CMR :
a) AKNH là tứ giác nt
b) AM.AM = MK.MB
c) Góc KAC bằng góc OMB
Chịu @- @
xét tứ giác AK NH có :
góc AKB bằng 90 độ g(óc nội tiếp chắn nửa đường tròn)
Góc AHN bằng 90° (AH vuông góc với hc)
Suy ra góc AKB + góc AHN bằng 180 độ
tự giác AHKN nt
Xét tam giác ABC có AK vuông góc với MB suy ra MA. MA=MK. MB
Gọi giao điểm của AC và OM là D phẩy giao điểm của m b với ac là i.
Xét tam giác AiK và tam giác MiD có
góc i là góc chung
Góc AKi=góc mdi(=90 độ)
Suy ra tam giác aik đồng dạng với tam giác min suy ra góc kac bằng goc 0mb
mình mới giải bài tập nhưng có một số ký hiệu không ghi được bằng bàn phím nên các bạn thông cảm
d, kéo dài BC cắt AM tại Q
\(\Delta ACQ\) vuông tại C có MA= MC (2 tiếp tuyến cắt nhau)
góc MAC = góc MCA
--> MAC + AQB=MCA+MCQ=90
-->AQB=MCQ-->MC=MQ--> MA=MQ
\(\Delta MAB\sim\Delta NHB\Rightarrow\frac{NH}{MA}=\frac{NB}{MB}\)
\(\Delta QMB\sim\Delta CNB\Rightarrow\frac{CN}{QM}=\frac{BN}{BM}\)
------>>>>........
1: góc AKP+góc AHP=180 độ
=>AKPH nội tiếp
2: góc KAC=1/2*sđ cung KC
góc OMB=góc CBK(MH//CB)
=>góc OMB=góc KAC
Bài 1:
a,
OM là đường trung bình của tam giác BAC => OM = 1/2*BC
OM = 1/2*AB
=> AB=BC (đpcm).
b,
Tam giác ABC đều => BC = 2*r(O)
MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.
a) Xét (O) có
(O) ngoại tiếp tam giác AKB
AB là đường kính (gt)
=> tam giác AKB vuông tại K => góc AKB = 90 độ
Xét tứ giác AKNH có
Góc AKB= 90 độ (cmt)
Góc NHA = 90 độ ( Do CH vuông góc với AB)
=> Góc AKB + Góc NHA = 90 độ + 90 độ = 180 độ
Mà góc AKB và góc NHA là 2 góc đối nhau
=> Tứ giác AKNH nội tiếp
Còn tứ giác KIAM thì mình không thấy đc điểm I
b) Xét tam giác AMB vuông tại A ( Do MA là tiếp tuyến tại A của (O)), đường cao AK( do góc AKB=90 độ)
=> AM^2=MK.MB
c) Gọi giao điểm của MO và AC là E
Xét (O) có
MA,MC lần lượt là tiếp tuyến tại A,C của (O) cắt nhau tại M (gt)
=> OM vuông góc với AC tại E
=> góc MEA = 90 độ
Xét tứ giác MKEA có
Góc MKA = 90 độ (cmt)
Góc MEA=90 độ (cmt)
Mà K,E là 2 đỉnh liền kề cùng nhìn đoạn MA
=> tứ giác MKEA nội tiếp
=> góc EMK = góc KAE ( 2 góc nội tiếp cùng chắn cung KE)
=> góc OMB = góc KAC (Dcpcm)