K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

a) Xét (O) có
(O) ngoại tiếp tam giác AKB
AB là đường kính (gt)
=> tam giác AKB vuông tại K => góc AKB = 90 độ
Xét tứ giác AKNH có
Góc AKB= 90 độ (cmt)
Góc NHA = 90 độ ( Do CH vuông góc với AB)
=> Góc AKB + Góc NHA = 90 độ + 90 độ = 180 độ
Mà góc AKB và góc NHA là 2 góc đối nhau
=> Tứ giác AKNH nội tiếp
Còn tứ giác KIAM thì mình không thấy đc điểm I
b) Xét tam giác AMB vuông tại A ( Do MA là tiếp tuyến tại A của (O)), đường cao AK( do góc AKB=90 độ)
=> AM^2=MK.MB
c) Gọi giao điểm của MO và AC là E
Xét (O) có
MA,MC lần lượt là tiếp tuyến tại A,C của (O) cắt nhau tại M (gt)
=> OM vuông góc với AC tại E
=> góc MEA = 90 độ
Xét tứ giác MKEA có
Góc MKA = 90 độ (cmt)
Góc MEA=90 độ (cmt)
Mà K,E là 2 đỉnh liền kề cùng nhìn đoạn MA
=> tứ giác MKEA nội tiếp
=> góc EMK = góc KAE ( 2 góc nội tiếp cùng chắn cung KE)

=> góc OMB = góc KAC (Dcpcm)

24 tháng 5 2016

cho đường tròn tâm O đường kính AB. Trên tiếp tuyến của đường tròn (O) tại A lấy điểm M (M khác A). Từ M vẽ tiếp tuyến thứ hai MC với (O) (C là tiếp điểm). Kẻ CH vuông góc với AB (H thuộc AB), MB cắt (O) tại điểm thứ hai là K cắt CH tại N. CMR :
a) AKNH là tứ giác nt
b)  AM.AM = MK.MB
c) Góc KAC bằng góc OMB

Chịu @- @

27 tháng 2 2019

 xét tứ giác AK NH có :

góc AKB bằng 90 độ g(óc nội tiếp chắn nửa đường tròn)

Góc AHN bằng 90° (AH vuông góc với hc)

Suy  ra góc AKB + góc AHN bằng 180 độ

 tự giác AHKN  nt 

Xét tam giác ABC có AK vuông góc với MB  suy ra MA. MA=MK. MB

Gọi giao điểm của AC và OM là D phẩy giao điểm của m b với ac là i.

Xét tam giác AiK và tam giác MiD có 

 góc i là góc chung

Góc AKi=góc mdi(=90 độ) 

Suy ra tam giác aik đồng dạng với tam giác min suy ra góc kac bằng goc 0mb

 mình mới giải bài tập nhưng có một số ký hiệu không ghi được bằng bàn phím nên các bạn thông cảm

18 tháng 7 2015

d, kéo dài BC cắt AM tại Q

\(\Delta ACQ\) vuông tại C có MA= MC (2 tiếp tuyến cắt nhau)

góc MAC = góc MCA

--> MAC + AQB=MCA+MCQ=90

-->AQB=MCQ-->MC=MQ--> MA=MQ

\(\Delta MAB\sim\Delta NHB\Rightarrow\frac{NH}{MA}=\frac{NB}{MB}\)

\(\Delta QMB\sim\Delta CNB\Rightarrow\frac{CN}{QM}=\frac{BN}{BM}\)

------>>>>........

24 tháng 5 2021
Câu d) nếu dùng ta lét thì làm thế nào ạ??
17 tháng 3 2019

ae giúp tôi câu d nhá

8 tháng 6 2019

bn vô hoc 24h.vn hỏi nha 

~ Hok tốt ~
#JH

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0

1: góc AKP+góc AHP=180 độ

=>AKPH nội tiếp

2: góc KAC=1/2*sđ cung KC

góc OMB=góc CBK(MH//CB)

=>góc OMB=góc KAC

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Mọi người ơi giúp e vsssssssssssssss.........E hỏi mà hong ai chỉ T.T

2
21 tháng 3 2020

ko làm mà muốn ăn thì chỉ có ăn cứt ăn đầu buồi nhá!

21 tháng 3 2020

Bài 1:

a,

OM là đường trung bình  của tam giác BAC => OM = 1/2*BC

OM = 1/2*AB

=> AB=BC (đpcm).

b, 

Tam giác ABC đều => BC = 2*r(O)

MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.