Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên BC lấy I sao cho IC=IB
Ta có AM=MC=AC/2=20/2= 10 cm
Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm
Áp dụng Pytago trong tam giác vuông AMH: AH2= AM2 - MH2 = 102 - 82= 36 ----> AH=6 cm
có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)
Từ I kẻ IK vuông góc AB
có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB)
---> MIKH là hình bình hành
---> MI=HK=12 cm; MH=IK=8 cm
BK= AB-AH-HK = 24-6-12=6 cm
Xét tam giác AMH và tam giác BIK:
AH=BK=6
góc AHM= góc BKI= 90O
MH=IK=8
----> tam giác AMH=tam giác BIK(c.g.c)
----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA
----> tam giác ABC cân tại C
b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)
----> AM=MC=IB=IC=10 cm
Kéo dài CO cắt AB tại D
tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O
có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o
Tương tự với tam giác OCB được OI vuông góc BC hay góc OIC=90o
Xét tam giác vuông OMC và tam giác vuông OIC:
MC=IC=10cm
OC cạnh chung
--->tam giác OMC = tam giác OIC (ch.cgv)
--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->
CD vuông góc AB hay góc ADC=90oAD=BD=AB/2 = 12 cm
Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256 ---> CD=16 cm
Đặt OC=OA=X --> OD= CD-OC = 16 - X
Theo Pytago tam giác AOD: AO2= OD2+AD2
<-->X2= (16-X)2 + 122
<--> 162 -32X + X2 +122 - X2=0
<--> 400 - 32X=0
<--> X= -400/-32= 12,5 cm
Vậy bán kính đường tròn bằng 12,5 cm
Trên BC lấy I sao cho IC=IB
Ta có AM=MC=AC/2=20/2= 10 cm
Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm
Áp dụng Pytago trong tam giác vuông AMH: AH2= AM2 - MH2 = 102 - 82= 36 ----> AH=6 cm
có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)
Từ I kẻ IK vuông góc AB
có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB)
---> MIKH là hình bình hành
---> MI=HK=12 cm; MH=IK=8 cm
BK= AB-AH-HK = 24-6-12=6 cm
Xét tam giác AMH và tam giác BIK:
AH=BK=6
góc AHM= góc BKI= 90O
MH=IK=8
----> tam giác AMH=tam giác BIK(c.g.c)
----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA
----> tam giác ABC cân tại C
b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)
----> AM=MC=IB=IC=10 cm
Kéo dài CO cắt AB tại D
tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O
có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o
Tương tự với tam giác OCB được OI vuông góc BC hay góc OIC=90o
Xét tam giác vuông OMC và tam giác vuông OIC:
MC=IC=10cm
OC cạnh chung
--->tam giác OMC = tam giác OIC (ch.cgv)
--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->
- CD vuông góc AB hay góc ADC=90o
- AD=BD=AB/2 = 12 cm
Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256 ---> CD=16 cm
Đặt OC=OA=X --> OD= CD-OC = 16 - X
Theo Pytago tam giác AOD: AO2= OD2+AD2
<-->X2= (16-X)2 + 122
<--> 162 -32X + X2 +122 - X2=0
<--> 400 - 32X=0
<--> X= -400/-32= 12,5 cm
Vậy bán kính đường tròn bằng 12,5 cm
tại sao bạn không kẻ đường cao CD. Như thế sẽ đỡ mất thời gian chứng minh
a, Vẽ MH ⊥ AB tại H; CH ⊥ AB tại K
=> MH là đường trung bình của ∆CAK => AM = 10cm
AH = 6cm => AK = 12cm => AK = 1 2 AB
Từ đó chứng minh được ∆ABC cân tại C
b, Ta có CK = 2MH = 16cm và đặt OC = x => OK = 16 – x
Từ đó tính được CO = 12,5cm
\(AM=\dfrac{1}{2}AC=10\left(cm\right)\)
Kẻ \(MD\perp AB\Rightarrow MD=8\left(cm\right)\)
Kẻ \(CH\perp AB\Rightarrow MD||CH\Rightarrow\) MD là đường trung bình tam giác ACH
\(\Rightarrow MD=\dfrac{1}{2}CH\Rightarrow CH=2MD=16\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ACH:
\(AH=\sqrt{AC^2-CH^2}=12\left(cm\right)\)
\(\Rightarrow AH=\dfrac{1}{2}AB\Rightarrow H\) đồng thời là trung điểm AB
\(\Rightarrow\Delta ABC\) cân tại C
b.
Do tam giác ABC cân tại C \(\Rightarrow O\in CH\)
Kéo dài CH cắt đường tròn tại E (E khác C) \(\Rightarrow CE\) là đường kính
\(\Rightarrow\widehat{CAE}\) là góc nội tiếp chắn nửa đường tròn hay tam giác CAE vuông tại A
Áp dụng hệ thức lượng:
\(AC^2=CH.CE\Rightarrow CE=\dfrac{AC^2}{CH}=25\left(cm\right)\)
\(\Rightarrow R=\dfrac{1}{2}CE=12,5\left(cm\right)\)
có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)
----> AM=MC=IB=IC=10 cm
Kéo dài CO cắt AB tại D
tam giác AOC có OA=OC (bán kính)
--> tam giác AOC cân tại O có OM là trung tuyến
---> OM vuông góc AC hay góc OMC=90 o
Tương tự với tam giác OCB được OI vuông góc BC hay góc OIC=90 o
Xét tam giác vuông OMC và tam giác vuông OIC:
MC=IC=10cm OC cạnh chung
--->tam giác OMC = tam giác OIC (ch.cgv)
--> góc MCO= góc ICO
---> CO hay CD là phân giác góc ACB của tam giác cân ABC
---> CD vuông góc AB hay góc ADC=90 o
AD=BD=AB/2 = 12 cm
Theo Pytago trong tam giác ACD:
CD^ 2= AC^ 2 -AD ^2 = 20 ^2 -12^ 2 =256
---> CD=16 cm
Đặt OC=OA=X
--> OD= CD-OC = 16 - X
Theo Pytago tam giác AOD:
AO2= OD^ 2+AD^ 2
<-->X^ 2= (16-X)^ 2 + 12 ^2
<--> 16^ 2 -32X + X^ 2 +12^ 2 - X ^2=0
<--> 400 - 32X=0
<--> X= -400/-32= 12,5 cm
Vậy bán kính đường tròn bằng 12,5 cm