K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

xét (o) ta có : cung BA bằng cung AC (A là điểm chính giửa cung nhỏ BC)

BMA là góc nội tiếp chắng cung BA

ACQ là góc tạo bởi tia tiếp tuyến và dây chắng cung AC

mà cung BA bằng cung AC (chứng minh trên)

\(\Rightarrow\) BMA = ACQ

\(\Leftrightarrow\) PMQ = PCQ

xét tứ giác PQCM ta có :

PMQ = PCQ (chứng minh trên)

mà PMQ và PCQ là 2 góc kề nhau cùng chắng cung PQ của tứ giác PQCM

\(\Rightarrow\) tứ giác PQCM là tứ giác nội tiếp (đpcm)

23 tháng 5 2017

xét (o) ta có : BMA = BCA (2 góc nội tiếp cùng chắng cung AB)

xét đường tròn ngoại tiếp tứ giác PQCM ta có :

CPQ = CMQ

\(\Leftrightarrow\) CPQ = AMC

mà BMA = AMC (cung AB bằng cung AC)

\(\Rightarrow\) BCA = CPQ

mà 2 góc này ở vị trí so le

\(\Rightarrow\) PQ // BC (đpcm)

14 tháng 4 2019

bạn ưi đề sai ạ mk ko vẽ hik đc 

bạn xem lại đề hộ vs ạ

14 tháng 4 2019

trả lời

100% sai đề

hok tốt