K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
10 tháng 2 2023
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
a) Xét (O) có
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
BC là nửa đường tròn(BC là đường kính)
Do đó: \(\widehat{BDC}=90^0\)(Hệ quả)
Xét ΔBDC có \(\widehat{BDC}=90^0\)(cmt)
nên ΔBDC vuông tại D(Định nghĩa tam giác vuông)
⇒CD⊥BD tại D
hay CD⊥BM tại D
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBCM vuông tại C có CD là đường cao ứng với cạnh huyền BM, ta được:
\(MC^2=MB\cdot MD\)(đpcm)