K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

A B C O H D E F P Q M N

a) Dễ có tứ giác BCEF nội tiếp đường tròn (BC). Suy ra ^BPQ = ^AFE = ^ECB = ^BCQ

Vậy tứ giác BPCQ nội tiếp (Quỹ tích cung chứa góc) (đpcm).

b) Có ^BPQ = ^BCQ = ^BFD (cmt) hay ^DPF = ^DFP. Vậy \(\Delta\)DPF cân tại D (đpcm).

c) Dễ thấy NE là tiếp tuyến của (AEF), suy ra ^NEF = ^EAF = ^BDF = 1800 - ^FDN

Suy ra tứ giác DFEN nội tiếp. Khi đó \(\Delta\)MFD ~ \(\Delta\)MNE (g.g). Vậy MF.ME = MD.MN (đpcm).

d) Ta thấy ^FDB = ^EDC (=^BAC); ^DNE = ^DFM (Vì tứ giác DFEN nội tiếp)

Do đó \(\Delta\)DEN ~ \(\Delta\)DMF (g.g). Từ đây DN.DM = DE.DF (1)

Từ câu b, ta có \(\Delta\)DPF cân tại D (DF = DP). Tương tự DE= DQ (2)

Từ (1) và (2) suy ra DN.DM = DP.DQ dẫn đến \(\Delta\)DPM ~ \(\Delta\)DNQ (c.g.c)

Suy ra 4 điểm M,P,Q,N cùng thuộc một đường tròn hay (MPQ) đi qua N cố định (đpcm).

11 tháng 3 2018

a)Xét (O) có, ^AMB=^ANB=^NBM=^NAM=90 độ ( góc nội tiếp chắn nửa đt)

Xét tứ giác ANBM có : ^AMB=^ANB=^NBM=90 độ (cmt)

=> TG ANBM là hcn

11 tháng 3 2018
https://i.imgur.com/fRTLmTv.jpg

a: Xét ΔOMN có OM=ON

nên ΔOMN cân tại O

mà OA là đường cao

nên OA là đường phân giác

Xét ΔOMA và ΔONA có

OM=ON

\(\widehat{MOA}=\widehat{NOA}\)

OA chung

Do đó: ΔOMA=ΔONA

Suy ra: \(\widehat{OMA}=\widehat{ONA}=90^0\)

hay NA là tiếp tuyến của (O)

b: Xét (O) có

ΔDMN nội tiếp

ND là đường kính

Do đó: ΔNDM vuông tại M

=>DM//OA

9 tháng 11 2015

vui lòng viết dấu để mình trả lời